mixmo.core.loss.SoftCrossEntropyLoss¶
-
class
mixmo.core.loss.SoftCrossEntropyLoss(config_args, device, config_loss=None)[source]¶ Bases:
mixmo.core.loss.AbstractLossSoft CrossEntropy loss that specifies the proper forward function for AbstractLoss
-
__init__(config_args, device, config_loss=None)¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(config_args, device[, config_loss])Initializes internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to float datatype.
forward(input, target)Defines the computation performed at every call.
get_accumulator_stats([format, split])Gather tracked stats into a dictionary as formatted strings
half()Casts all floating point parameters and buffers to
halfdatatype.load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
print_details()register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor)Adds a persistent buffer to the module.
register_forward_hook(hook)Registers a forward hook on the module.
register_forward_pre_hook(hook)Registers a forward pre-hook on the module.
register_parameter(name, param)Adds a parameter to the module.
requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
share_memory()start_accumulator()state_dict([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.zero_grad()Sets gradients of all model parameters to zero.
Attributes
dump_patchesThis allows better BC support for
load_state_dict().-
_forward(input, target)[source]¶ Cross entropy that accepts soft targets :param pred: predictions for neural network :param targets: targets, can be soft :param size_average: if false, sum is returned instead of mean
Examples:
input = torch.FloatTensor([[1.1, 2.8, 1.3], [1.1, 2.1, 4.8]]) input = torch.autograd.Variable(out, requires_grad=True) target = torch.FloatTensor([[0.05, 0.9, 0.05], [0.05, 0.05, 0.9]]) target = torch.autograd.Variable(y1) loss = cross_entropy(input, target) loss.backward()
-