mixmo.core.loss.SoftCrossEntropyLoss¶
-
class
mixmo.core.loss.
SoftCrossEntropyLoss
(config_args, device, config_loss=None)[source]¶ Bases:
mixmo.core.loss.AbstractLoss
Soft CrossEntropy loss that specifies the proper forward function for AbstractLoss
-
__init__
(config_args, device, config_loss=None)¶ Initializes internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__
(config_args, device[, config_loss])Initializes internal Module state, shared by both nn.Module and ScriptModule.
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to float datatype.
forward
(input, target)Defines the computation performed at every call.
get_accumulator_stats
([format, split])Gather tracked stats into a dictionary as formatted strings
half
()Casts all floating point parameters and buffers to
half
datatype.load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
print_details
()register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor)Adds a persistent buffer to the module.
register_forward_hook
(hook)Registers a forward hook on the module.
register_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_parameter
(name, param)Adds a parameter to the module.
requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
share_memory
()start_accumulator
()state_dict
([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.zero_grad
()Sets gradients of all model parameters to zero.
Attributes
dump_patches
This allows better BC support for
load_state_dict()
.-
_forward
(input, target)[source]¶ Cross entropy that accepts soft targets :param pred: predictions for neural network :param targets: targets, can be soft :param size_average: if false, sum is returned instead of mean
Examples:
input = torch.FloatTensor([[1.1, 2.8, 1.3], [1.1, 2.1, 4.8]]) input = torch.autograd.Variable(out, requires_grad=True) target = torch.FloatTensor([[0.05, 0.9, 0.05], [0.05, 0.05, 0.9]]) target = torch.autograd.Variable(y1) loss = cross_entropy(input, target) loss.backward()
-