mixmo.learners.learner.Learner¶
-
class
mixmo.learners.learner.Learner(config_args, dloader, device)[source]¶ Bases:
mixmo.learners.abstract_learner.AbstractLearnerLearner object that defines the specific train and test loops for the model
-
__init__(config_args, dloader, device)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__(config_args, dloader, device)Initialize self.
evaluate(inference_loader[, split])Perform an evaluation of the model
evaluate_loop(inference_loader)Evaluation loop over the dataset specified by the loader
load_checkpoint(checkpoint[, …])Load checkpoint (and optimizer if included) to the wrapped model
save_checkpoint(epoch[, save_path])Save model (and optimizer) state dict
save_tb(logs_dict, epoch)Write stats from logs_dict at epoch to the Tensoboard summary writer
train(epoch)Train for one epoch
train_loop(epoch)Training loop for one epoch
Attributes
tb_loggerGet (or initialize) the Tensorboard SummaryWriter
-
_prepare_batch_test(data)[source]¶ Prepares the test batch by setting up the input dictionary and putting tensors on devices
-