mixmo.learners.learner.Learner

class mixmo.learners.learner.Learner(config_args, dloader, device)[source]

Bases: mixmo.learners.abstract_learner.AbstractLearner

Learner object that defines the specific train and test loops for the model

__init__(config_args, dloader, device)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(config_args, dloader, device)

Initialize self.

evaluate(inference_loader[, split])

Perform an evaluation of the model

evaluate_loop(inference_loader)

Evaluation loop over the dataset specified by the loader

load_checkpoint(checkpoint[, …])

Load checkpoint (and optimizer if included) to the wrapped model

save_checkpoint(epoch[, save_path])

Save model (and optimizer) state dict

save_tb(logs_dict, epoch)

Write stats from logs_dict at epoch to the Tensoboard summary writer

train(epoch)

Train for one epoch

train_loop(epoch)

Training loop for one epoch

Attributes

tb_logger

Get (or initialize) the Tensorboard SummaryWriter

_prepare_batch_test(data)[source]

Prepares the test batch by setting up the input dictionary and putting tensors on devices

_prepare_batch_train(data)[source]

Prepares the train batch by setting up the input dictionary and putting tensors on devices

_subloop(dict_tensors, backprop)[source]

Basic subloop for a step/batch (without optimization)

_train_subloop(dict_tensors)[source]

Complete training step for a batch, return summary logs

evaluate_loop(inference_loader)[source]

Evaluation loop over the dataset specified by the loader

train_loop(epoch)[source]

Training loop for one epoch