mixmo.utils.torchutils.kaiming_normal_truncated¶
-
mixmo.utils.torchutils.
kaiming_normal_truncated
(tensor, a=0, mode='fan_in', nonlinearity='relu')[source]¶ Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a normal distribution. The resulting tensor will have values sampled from \(\mathcal{N}(0, \text{std})\) where
\[\text{std} = \sqrt{\frac{2}{(1 + a^2) \times \text{fan\_in}}}\]Also known as He initialization.
- Parameters
tensor – an n-dimensional torch.Tensor
a – the negative slope of the rectifier used after this layer (0 for ReLU by default)
mode – either
'fan_in'
(default) or'fan_out'
. Choosing'fan_in'
preserves the magnitude of the variance of the weights in the forward pass. Choosing'fan_out'
preserves the magnitudes in the backwards pass.nonlinearity – the non-linear function (nn.functional name), recommended to use only with
'relu'
or'leaky_relu'
(default).
Examples
>>> w = torch.empty(3, 5) >>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')