

5th Workshop on Computer Vision for Fashion, Art, and Design

Goal: multicolor regression

Yellow \rightarrow (245, 172, 3)

Black \rightarrow (16, 10, 0)

White \rightarrow (230, 226, 238)

Color detection: because color is a key attribute of fashion garments.

Multicolor items: because knowing which colors are associated is more interesting than detecting only the main color.

Regression challenge: because continuous values are richer than discrete predefined color names (which can become outdated).

CoRe: Color Regression for Multicolor Fashion Garments

Alexandre Ramé (@ramealexandre), Arthur Douillard and Charles Ollion

Sorbonne Université, Paris

New two-stage architecture and training procedure

Color-attention	Object-attention	Illumination	Main color	All colors
			47	19
			51	34
\checkmark			48	35
	\checkmark		50	-
v √	\checkmark		62	46
	\checkmark	\checkmark	73	54
-	Color-attention ✓ ✓	Color-attention Object-attention ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	Color-attention Object-attention Illumination \checkmark	Color-attentionObject-attentionIlluminationMain color 47 47 51 47 \checkmark 48 \checkmark \checkmark 50 \checkmark \checkmark 62 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

Evaluation in regression

1. Classification:

Colorname RGB: standard classification.

Illumination: fixing the illumination bias with Von Kries formula.

2. Regression with 3 attention maps: Colorname-attention: detect pixels close to the classified color name.

Object-attention: detect pixels inside the clothing (to remove background).

Combined-attention: combine the 2 previous attentions. Once multiplied with the illumination-fixed image, it provides our

> Pataset: 30,269 fashion garments (coats, resses, pants, etc) with multiple colors.

> *1etric:* % of predictions closer than 10 to ne true RGBs wrt the *deltaE ciede2000*.

esults: all components are useful.