

DICE: **Diversity In Deep Ensembles** Via **Conditional Redundancy Adversarial Estimation** Alexandre Ramé and Matthieu Cord 6 Machine Learning & valeo Deep Learning for **ICLR 2021** Information Access

Ensemble

Motivation: diversity in ensemble

Deep ensembles: randomness in initializations

[1] Simple and scalable predictive uncertainty estimation using deep ensembles. Lakshminarayanan *et al.*, in *NeurIPS* 2017.

[2] Deep Ensembles: A Loss Landscape Perspective. Fort et al., 2019.

Deep ensembles success

[1] Simple and scalable predictive uncertainty estimation using deep ensembles. Lakshminarayanan *et al.*, in *NeurIPS* 2017.

[2] Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning. Ashukha *et al.*, in *ICLR* 2020.
 [3] On Power Laws in Deep Ensembles. Lobacheva *et al.*, in *NeurIPS* 2020.

DICE: beyond independent strategy

How to increase diversity ?

Stochasticity in data: bagging

[1] Bagging predictors. Leo Breiman, in *Machine Learning*, 1996.

[2] Why Are Bootstrapped Deep Ensembles Not Better. Nixon et al., in NeurIPS workshop 2020.

Regularization in predictions

[3] Diversity with cooperation: Ensemble methods for few-shot classification. Dvornik et al., in ICCV, 2019.

[4] Improving adversarial robustness via promoting ensemble diversity. Pang et al., in ICML 2019.

→ reduced individual performances

Trade off: ensemble diversity vs. individual accuracy

Same predictions but for different reasons

=> diversity in features

Information bottleneck theory

Nobody knows what entropy really is.

John Van Neumann to Claude Shannon

Background: information bottleneck

[1] The Information Bottleneck Method. Tishby, 1999.
[2] Deep variational information bottleneck. Alemi *et al.*, in *ICLR* 2017.
[3] The Conditional Entropy Bottleneck. Fischer, 2020.

$DICE = min_{Z_1,Z_2}CEB(Z_1) + CEB(Z_2) + \delta I(Z_1;Z_2|Y)$

(for M = 2 networks)

$DICE = min_{Z_1,Z_2}CEB(Z_1) + CEB(Z_2) + \delta I(Z_1;Z_2|Y)$

Conditioning on label Y:

- Reduce spurious correlations
- Independent bias, but not independent features

Transforming DICE into a Tractable Loss

 $DICE = min_{Z_1,Z_2}CEB(Z_1) + CEB(Z_2) + \delta I(Z_1;Z_2|Y)$

VCEB: variational approximation loss

$$\begin{split} & CEB(Z_i) \leq VCEB(\{\boldsymbol{e_i}, \boldsymbol{c_i}, \boldsymbol{b_i}\}) \\ & \approx \frac{1}{N} \sum_{n=1, \dots, N} \left[\frac{1}{\beta} D_{KL} \left(\boldsymbol{e_i}(\boldsymbol{z}|\boldsymbol{x}^n) \parallel \boldsymbol{b_i}(\boldsymbol{z}|\boldsymbol{y}^n) \right) - \mathbb{E}_{\varepsilon} log \left(\boldsymbol{c_i} \left(\boldsymbol{y^n} | \boldsymbol{e_i}(\boldsymbol{x^n}, \varepsilon) \right) \right) \right] \end{split}$$

Where:

- *e_i* distribution encoder of input x
- c_i classifier that targets class y
- *b_i* class *y* backward encoder

Architecture: ensemble

Step 1: classification with conditional entropy bottleneck

Transforming DICE into a Tractable Loss

$DICE = min_{Z_1,Z_2}CEB(Z_1) + CEB(Z_2) + \delta I(Z_1;Z_2|Y)$

No Markov properties between Z_1, Z_2 and Y=> No variational approximation

Donsker-Varadhan representation: $I(Z_1; Z_2|Y) = \mathbb{E}_{t \sim P(Z_1, Z_2, Y)}[f^*(t)] - log\{\mathbb{E}_{t' \sim P(Z_1, Y)P(Z_2|Y)}[exp(f^*(t'))]\}$

with f^* the pointwise likelihood ratio:

$$f^*(z_1, z_2, y) = \frac{p(z_1, z_2, y)}{p(z_1, y)p(z_2|y)} \approx \frac{w(z_1, z_2, y)}{1 - w(z_1, z_2, y)}$$

and w a neural network trained as a discriminator.

Batch:	Tuple of two features extracted from:
Joint distribution	The same image
Product distribution	Two different images from same label Y

[1] Asymptotic evaluation of certain markov process expectations for large time. Donsker *et al.*, 1975.
[2] Mutual information neural estimation. Belghazi *et al.*, in *NeurIPS* 2016.

Full training strategy

Step 1: classification with conditional entropy bottleneck

$$\mathcal{L}_{\text{DICE}}(\{e_1, c_1, b_1\}, \{e_2, c_2, b_2\}) \\ = VCEB_{\beta}(\{e_1, c_1, b_1\}) + VCEB_{\beta}(\{e_2, c_2, b_2\})$$

Full training strategy

$$\mathcal{L}_{\text{DICE}}(\{e_1, c_1, b_1\}, \{e_2, c_2, b_2\}) \\ = VCEB_{\beta}(\{e_1, c_1, b_1\}) + VCEB_{\beta}(\{e_2, c_2, b_2\}) + \delta \mathcal{L}_{DV}^{CR}(e_1, e_2)$$

$$\mathcal{L}_{\text{DICE}}\left(\left\{\boldsymbol{e_{i}}, \boldsymbol{c_{i}}, \boldsymbol{b_{i}}\right\}_{i=1,\dots,M}\right)$$
$$= \sum_{i=1}^{M} \left[VCEB_{\beta}\left(\left\{\boldsymbol{e_{i}}, \boldsymbol{c_{i}}, \boldsymbol{b_{i}}\right\}\right) + \frac{\delta}{M-1} \sum_{j=i+1}^{M} \mathcal{L}_{DV}^{CR}\left(\boldsymbol{e_{i}}, \boldsymbol{e_{j}}\right)\right]$$

Main results on CIFAR-100 with ResNet-32

✓ 5 networks with DICE match 7 independent networks

State of the art ensemble on CIFAR-100

Network	Resnet-32		Resnet-110	WRN-28-2		
Architecture	Branch	Branch	Net	Branch	Branch	Net
Size	3	4	4	4	3	3
DE [1]	76.28	76.78	77.38	80.89	78.83	80.01
ADP [2]	76.37	77.21	77.51	81.40	79.21	80.01
CEB [3]	76.36	76.98	77.64	81.17	78.92	80.38
CEBR (Our)	76.72	77.30	77.82	81.55	79.25	80.35
DICE (Our)	76.89	77.51	77.92	81.93	79.59	80.55

✓ {+0.52, +0.30, +0.41} for {3, 4, 5}-branches ResNet-32 wrt. previous sota
 ✓ {+0.94, +0.53} for {3, 4}-branches ResNet-110 wrt. previous sota

[1] Simple and scalable predictive uncertainty estimation using deep ensembles.

Lakshminarayanan et al., in NeurIPS 2017.

[2] Improving adversarial robustness via promoting ensemble diversity. Pang et al., in ICML 2019.

[3] The Conditional Entropy Bottleneck. Fischer, 2020.

Trade off: ensemble diversity vs. individual accuracy

 $DICE = min_{Z_1,Z_2}CEB(Z_1) + CEB(Z_2) + \frac{\delta I(Z_1;Z_2|Y)}{\delta I(Z_1;Z_2|Y)}$

Metric (after TS)	1-net	DE	ADP	CEB	CEBR (Our)	DICE (Our)
NLL ↓	10.38	8.10	8.51	8.11	8.05	7.98
Brier Score ↓	3.92	3.24	3.27	3.19	3.17	3.12

Theoretically

- ✓ Information bottleneck for deep ensembles
- ✓ Neural estimation of conditional mutual information
- ✓ New adversarial learning framework

Empirically

- ✓ State of the art ensemble on CIFAR-100 and CIFAR-10
- ✓ Control ensemble diversity vs. individual accuracy trade-off
- => More in paper: uncertainty, calibration, OOD, co-distillation ...

DICE: Diversity In Deep Ensembles via Conditional Redundancy Adversarial Estimation

Merci !

Alexandre Ramé and Matthieu Cord

https://openreview.net/forum?id=R2ZITVPx0Gk