
Bias-variance-covariance decomposition for ensembling [Ueda1996]:

𝔼!"#[err$ 𝑒𝑛𝑠 ] = 𝐛𝐢𝐚𝐬$𝟐 +
1
𝑀𝐯𝐚𝐫𝑻 +

𝑀 − 1
𝑀 𝐜𝐨𝐯𝑻,

•𝐛𝐢𝐚𝐬𝑻: bias of a single model averaged over 𝑇,

•𝐯𝐚𝐫𝑻: variance of a single model averaged over 𝑇,
•𝐜𝐨𝐯𝑻: covariance, 𝐜𝐨𝐯 𝑥 = 𝔼","! 𝑓" 𝑥 − 𝔼" [𝑓" 𝑥 ] 𝑓"! 𝑥 − 𝔼" [𝑓" 𝑥 ]

➜ Factor 1/𝑀 reduces 𝐯𝐚𝐫 i.e. ensembling handles diversity shift.
➜ Ensembling cannot reduce bias i.e. correlation shift.
➜ 𝐜𝐨𝐯 should be controlled to control the target error.
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SAM [Foret2021]; WA+SAM [Kaddour2022]  have worse OOD despite more flatness ➜ contradicts [Cha2021]. 
Our analysis explains this result:
➜ WA benefits from ensembling (unlike SAM).
➜ ERM has more diversity than SAM.

Per [Kohavi1996]:
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➜ cov reduced with diversity
➜ Gain in accuracy of WA improves with diversity
➜ Linear regression’s slope increases with 𝑀

For NNs with diagonally dominant NTK:

𝔼'[err$ 𝜃 ] = 𝐛𝐢𝐚𝐬$𝟐 + 𝐯𝐚𝐫$  
•𝐛𝐢𝐚𝐬$𝟐 : bias averaged over 𝑇,    𝐛𝐢𝐚𝐬 𝑥, 𝑦 = 𝑦 − 𝔼" [𝑓" 𝑥 ]
•𝐯𝐚𝐫$: variance averaged over 𝑇	, 𝐯𝐚𝐫 𝑥 = 𝔼" 𝑓" 𝑥 − 𝔼" [𝑓" 𝑥 ] & 4

Shift Diversity Correlation

Definition

𝑝( 𝑋 ≠ 𝑝$ 𝑋 𝑝( 𝑌|𝑋 ≠ 𝑝$ 𝑌|𝑋

Dataset PACS, OfficeHome… ColoredMNIST, CelebA…

Sample

Bias-
variance

Small bias
Large variance

Large bias
Small variance
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SoTA

This paper:
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Invariance: IRM, Coral
Robust optim: gDRO
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Train (source !) Test (target ")

Domain 1 Domain 2 Domain 3

𝐯𝐚𝐫)! ∝ 𝑀𝑀𝐷*$+"
, 𝑋)# , 𝑋)! + …

𝑑' source dataset with input support 𝑋(" resp. 𝑑$ target dataset with support 𝑋(# .

➜ 𝐯𝐚𝐫 in OOD increases when the marginals mismatch.

DiWA is state-of-the-art on DomainBed10

Algo Cost PACS VLCS OH TI DN Avg
ERM 1 85.5 77.5 66.5 46.1 40.9 63.3
CORAL 1 86.2 78.8 68.7 47.6 41.5 64.6
SWAD 1 88.1 79.1 70.6 50.0 46.5 66.9
ENS 20 88.1 78.5 71.7 50.8 47.0 67.2
DiWA 1 89.0 78.6 72.8 51.9 47.7 68.0

For large NNs:

𝐛𝐢𝐚𝐬$𝟐 ≈ ∫$ 𝔼$ 𝑌|𝑋 = 𝑥 − 𝔼( 𝑌|𝑋 = 𝑥 ,𝑝$ 𝑥 𝑑𝑥
➜ 𝐛𝐢𝐚𝐬 in OOD increases when the posteriors mismatch.
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Covariance and Diversity7

Legend: Each dot is the accuracy gain of combining 𝑀 
models over the average accuracy w.r.t. diversity.
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Weight Averaging and Ensembling

Various methods on DomainBed [Gulrajani2021]:

• Invariance: CORAL [Sun2016] ~ ERM 

• WA: SWAD [Cha2021] ≫ ERM

• Ensembling: ENS ≫ ERM - high inference cost

• DiWA is SoTA - low inference cost
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Train on 𝑆 source domain and test on 𝑇 target domain.

Under domain shifts divided per [Ye2022] into:

• Diversity shift: 𝑝'(𝑋) ≠ 𝑝$(𝑋) 

• Correlation shift: 𝑝' 𝑌 𝑋 ≠ 𝑝$(𝑌|𝑋)

𝜃! shared 
pretrained 

initialization 𝜃"

…𝜃#

𝜃$

𝔼'$%[err$ 𝜃-. ] = 𝔼!"#[err$ 𝑒𝑛𝑠 ] + 𝒪 E∆,

• C∆& = 𝑚𝑎𝑥)*+, 𝜃) − 𝜃-.
&: locality constraint

➜ WA has the advantages of ensembling without inference cost.

Training 2

Training 𝑀

Training …

Controlling Diversity Shift with Ensembling5

𝜃%&'(4

➜ Increase diversity in data/learning procedure 
as long as linear mode connectivity is satisfied.

Diversity-Averageability trade-off

Legend: Each dot is the accuracy gain of combining 𝑀 
models over the average accuracy w.r.t. diversity.
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Low loss linear path
[Neyshabur2020]
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Contact

ArXiv: https://arxiv.org/abs/2205.09739
Code: https://github.com/alexrame/diwa
Contact: first.last@sorbonne-universite.fr

[Izmailov2018]


