

Diverse Weight Averaging for Out-of-Distribution Generalization

Alexandre Ramé (Sorbonne & Meta AI)

Matthieu Kirchmeyer (Sorbonne & Criteo)

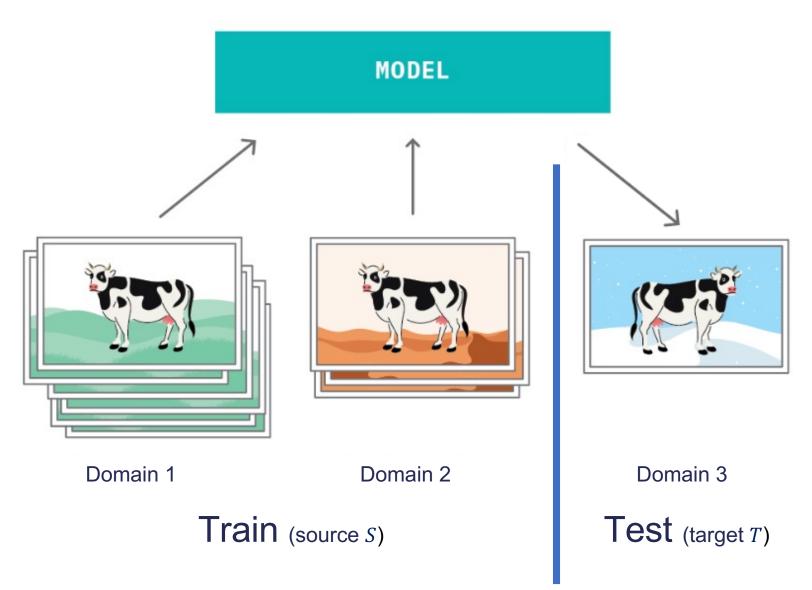
Thibaud Rahier (Criteo)

Alain Rakotomamonjy (LITIS & Criteo)

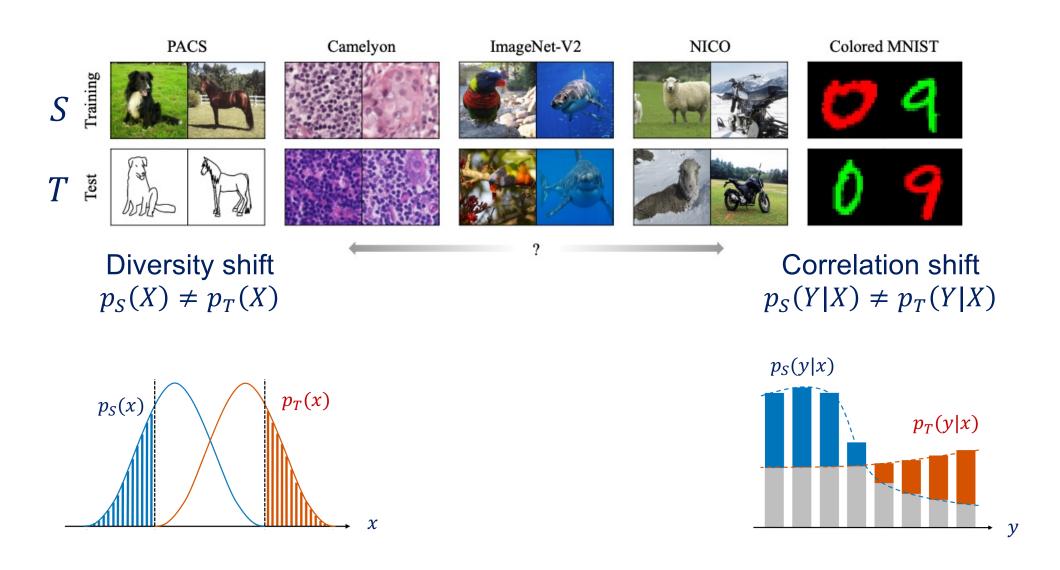
Patrick Gallinari (Sorbonne & Criteo)

Matthieu Cord (Sorbonne & Valeo.ai)

Goal: generalization to unseen domains



Two kind of source/target distribution shifts



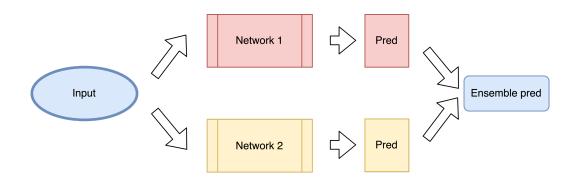
A bias-variance analysis in OOD

$$\mathbb{E}_{\theta}err_{T}(\theta) = bias^{2} + var \qquad \text{Low} \\ \text{variance} \qquad \text{where, with } \bar{f}(x) = \mathbb{E}_{\theta} f_{\theta}(x): \\ \bullet \ bias(x,y) = y - \bar{f}(x), \\ \bullet \ var(x) = \mathbb{E}_{\theta} \left[\left(f_{\theta}(x) - \bar{f}(x) \right)^{2} \right]. \qquad \qquad \text{High bias} \qquad \qquad \text{High bias}$$

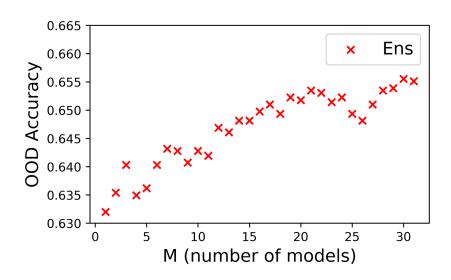
Question: how do bias and var change with distribution shifts?

	Correlation shift	Diversity shift		
Probabilistic perspective	$p_S(Y X) \neq p_T(Y X)$	$p_S(X) \neq p_T(X)$		
Example	09			
Datasets	ColoredMNIST, CelebA	OfficeHome, PACS		
	Large bias Small variance	Small bias Large variance		
Bias-variance				
Approaches	Invariance: IRM, CoralRobust optimization: gDRO	 Variance reduction: ensembling, DiWA 		

Ensembling M models tackles variance



$$\mathbb{E}_{ens_M}err_T(ens_M) \approx bias^2 + \frac{1}{M}var$$

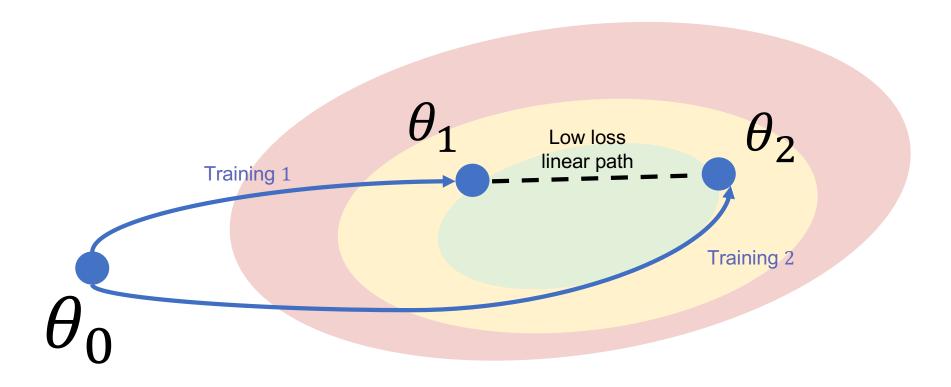


Setup: OfficeHome under diversity shift

- train on Clipart, Product, Photo
- test on OOD Art

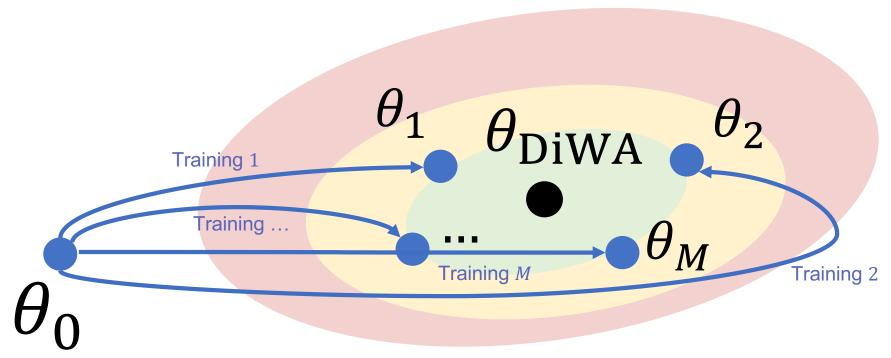
Yet traditional prediction ensembling is costly ...

An empirical insight: linear mode connectivity



Low-loss linear path when fine-tunings start from a shared pretrained initialization θ_0 (despite the architecture's non-linearities).

Diverse Weight Averaging (DiWA)



$$\theta_{\text{DiWA}} = \frac{1}{M} \sum_{m=1}^{M} \theta_m$$

obtained from a shared pretrained initialization θ_0 . Then:

$$f_{\theta_{\text{DiWA}}} = f_{\frac{1}{M} \sum_{m=1}^{M} \theta_m} \approx \frac{1}{M} \sum_{m=1}^{M} f_{\theta_m}.$$

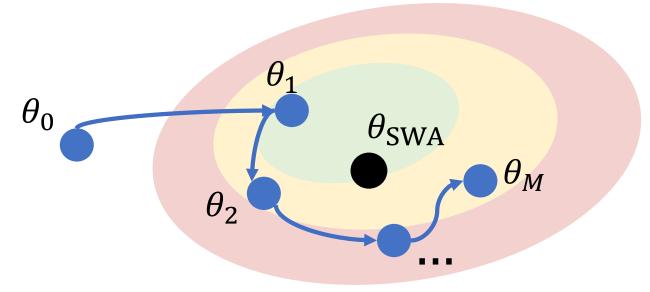
SoTA on DomainBed [Gulrajani2021]

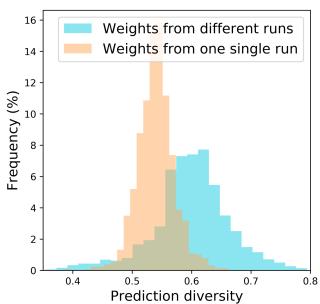
Reference benchmark for OOD generalization in computer vision, imposing the code, datasets, training procedures, hyperparameter search etc.

VLCS	Caltech101	LabelMe	SUN09	VOC2007		
PACS	Art	Cartoon	Photo	Sketch		
Office-Home	Art	Clipart	Product	Photo		
Terra Incognita	L100 (camera trap	L38 location)	L43	L46		
DomainNet	Clipart	Infographic	Painting	QuickDraw	Photo	Sketch

Algo	Cost	PACS	VLCS	ОН	TI	DN	Avg
ERM	1	85.5	77.5	66.5	46.1	40.9	63.3
CORAL	1	86.2	78.8	68.7	47.6	41.5	64.6
SWAD	1	88.1	79.1	70.6	50.0	46.5	66.9
ENS	20	88.1	78.5	71.7	50.8	47.0	67.2
DiWA	1	89.0	78.6	72.8	51.9	47.7	68.0

Previous SoTA: single-run WA



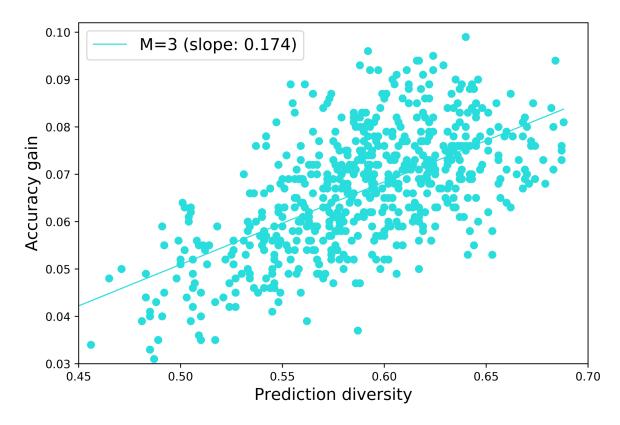


Weights from different runs are more diverse (left) thus their average is better (next slide).

Covariance as diversity

$$\mathbb{E}_{\theta_{WA}}err_{T}(\theta_{WA}) \approx bias^{2} + \frac{1}{M}var + \frac{M-1}{M}cov,$$

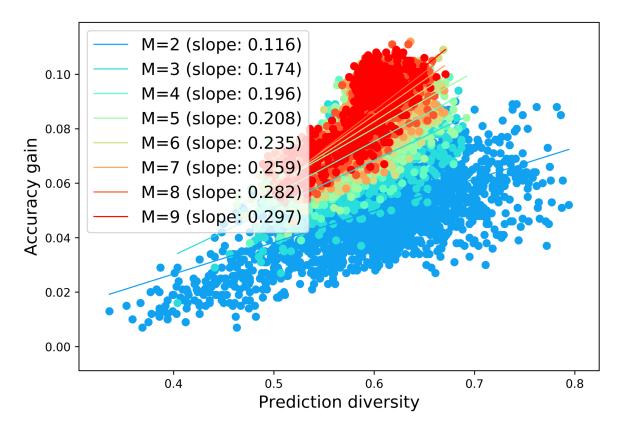
where cov is smaller when models are uncorrelated, i.e., functionally diverse.



Legend: Each dot is the accuracy gain of averaging M=3 models over the average accuracy wrt their diversity (normalized count of different errors).

Diversity even more important for larger M

$$\mathbb{E}_{\theta_{WA}}err_{T}(\theta_{WA}) = bias^{2} + \frac{1}{M}var + \frac{M-1}{M}cov + \mathcal{O}(\overline{\Delta}^{2}).$$



Legend: Each dot is the accuracy gain of averaging M models over the average accuracy wrt their diversity (normalized count of different errors).

- Bias-variance analysis in OOD
 - ✓ Relate diversity shift to variance
 - ✓ Relate correlation shift to bias
- New weight averaging strategy
 - ✓ Average all weights obtained from the hyperparameter search
 - ✓ SoTA on DomainBed to tackle diversity shift

arXiv: https://arxiv.org/abs/2205.09739

code: https://github.com/alexrame/diwa