

ES

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks

Alexandre Ramé, Rémy Sun and Matthieu Cord

valeo.a

Machine Learning & Deep Learning for Information Access

[1] Simple and scalable predictive uncertainty estimation using deep ensembles. Lakshminarayanan *et al.*, in *NeurIPS* 2017.

Ensembling improves accuracy ...

^[1] On Power Laws in Deep Ensembles. Lobacheva et al., in NeurIPS 2020.

[1] Pruning filters for efficient convnets. Li et al., ICLR 2017

[2] The lottery ticket hypothesis: Finding sparse, trainable neural networks. Jonathan Frankle and Michael Carbin, ICLR 2019

Main idea: multiple subnetworks inside one base network

[1] Training independent subnetworks for robust prediction. Havasi et al., ICLR 2021

Architecture: all layers shared except the encoders and the classifiers

Mixing block combining the inputs' features

Mixup

PatchUp2d

[1] Training independent subnetworks for robust prediction. Havasi et al., ICLR 2021

11

CutMix

Binary mixing as mixing block improves individual accuracies & ensemble diversity

MixUp

Concat. 82.78%

CowMix 84.17% PatchUp 84.16%

FMix 83.76% CutMix 84.38%

$$\mathcal{L}_{\mathsf{MixMo}} = w_r(\kappa) \mathcal{L}_{\mathsf{CE}}(\mathbb{Q},\mathbb{Q}) + w_r(1-\kappa) \mathcal{L}_{\mathsf{CE}}(\mathbb{Q},\mathbb{Q})$$

State of the art on CIFAR and TinyImageNet

Approach	#Params	WRN-28-10		ResNet-18-3
		CIFAR100	CIFAR10	TinyImageNet
Vanilla	1.0	81.63	96.34	65.78
CutMix	1.0	84.05	97.23	68.95
Deep Ens.	2.0	83.17	96.67	68.38
MIMO	1.002	83.06	96.74	68.48
Cut-MixMo	1.002	85.40	97.51	70.24

Better leverages over-parameterization

Theoretically

Unifying framework for multi-input multi-output ensembling Connection with data augmentation

Empirically

State of the art at same inference cost as a vanilla network More in paper: ImageNet, robustness, memory split advantage

https://github.com/alexrame/mixmo-pytorch

Merci !