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A B S T R A C T

This thesis aims at enhancing the generalization abilities of deep neural networks, a
critical step towards fair and reliable artificial intelligence. Specifically, we address the
drop in performance when models are evaluated on test samples with a distribution shift
with respect to the train samples.

To this end, we focus on ensembling strategies: indeed, combining multiple models
is a standard, simple yet potent strategy to improve robustness. After an overview of
the relevant literature, we provide a new explanation of ensembling’s success under
distribution shifts, especially when the members of the ensemble are diverse.

To foster such diversity within members, we investigate several strategies. The initial
one, DICE, introduces an explicit regularization to eliminate redundant information across
members. Subsequent diversity methods in this thesis are implicit, relying on diverse data
augmentation (in MixMo), diverse hyperparameters (in DiWA), inter-training on auxiliary
datasets (in ratatouille), and diverse objectives (in rewarded soups).

The second primary challenge addressed in this thesis is the enhancement of ensemble
efficiency, and aims at lessening the computational burden of combining multiple mod-
els; indeed, when considering two members, the standard ensembling by averaging of
predictions doubles the computational cost, thus impeding scalability. After exploring
subnetwork ensembling (in MixMo), we introduce a significant contribution of this thesis;
the observed ability to average the models in weights rather than in predictions. This
finding was surprising due to the non-linearities in deep architectures. We empirically
demonstrate that, when weights are fine-tuned from a shared pre-trained initialization,
weight averaging succeeds by approximating ensembling without any inference overhead.
The empirical gains are especially important on DomainBed, the reference benchmark
evaluating out-of-distribution generalization. More broadly, weight averaging facilitates
effortless parallelization, enhancing machine learning updatability and data privacy.

Finally, this thesis explores how ensembling can facilitate the alignment of models.
This is critical to mitigate the societal ethical concerns from recent rapid scale-up in deep
learning. To this end, we propose rewarded soups, a new strategy for multi-objective
reinforcement learning, paving the way towards more transparent and reliable artifical
intelligences, aligned with the world in all its diversity.
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R É S U M É

Cette thèse vise à améliorer les capacités de généralisation des réseaux de neurones
profonds, un enjeu essentiel pour le développement de systèmes d’intelligence artificielle
à la fois fiables et équitables. Le coeur du défi réside dans la gestion des potentiels
changements de distributions entre les données d’entraînement et celles de test pour
l’évaluation, pouvant réduire les performances.

Dans cette thèse, nous analysons principalement des stratégies consistant à combiner
plusieurs réseaux de neurones. Cette simple méthode d’ensemble est classique mais par-
ticulièrement efficace pour améliorer la généralisation. Après avoir examiné la littérature
existante, nous proposons une nouvelle explication de la réussite des méthodes d’en-
semble hors-distribution, en particulier lorsque les différents membres de l’ensemble sont
suffisamment divers pour compenser mutuellement leurs erreurs individuelles.

Pour encourager cette diversité entre les membres de l’ensemble, nous explorons plu-
sieurs approches. La première, baptisée DICE, introduit explicitement une régularisation
visant à éliminer de potentielles informations redondantes entre les membres de l’en-
semble lors de l’apprentissage. Les autres méthodes de diversité utilisées dans cette thèse
sont implicites, s’appuyant sur une augmentation diversifiée des données (dans MixMo),
le choix d’hyperparamètres variés (dans DiWA), des entraînements intermédiaires sur
des jeux de données auxiliaires (dans ratatouille), ou des récompenses différenciées en
apprentissage par renforcement (dans rewarded soups).

Le second enjeu majeur de cette thèse concerne l’efficacité des méthodes d’ensemble.
L’objectif est d’atténuer le coût computationnel inhérent à la combinaison de plusieurs
réseaux ; en effet, considérant deux réseaux, la méthode standard qui consiste à moyenner
leurs prédictions multiplie par deux le coût. Après avoir exploré une stratégie d’ensemble
de sous-réseaux (dans MixMo), nous décrivons une contribution majeure de cette thèse :
l’analyse d’une stratégie consistant à faire la moyenne des poids des réseaux de neurones
plutôt que de leurs prédictions. Cette stratégie, surprenante en raison des non-linéarités
des architectures profondes, fonctionne empiriquement lorsque les modèles sont appris à
partir d’une même initialisation pré-entraînée. Cette moyenne des poids offre les bénéfices
de l’ensemble sans aucun coût supplémentaire pour l’évaluation, en particulier sur Do-
mainBed, le benchmark de référence pour évaluer la généralisation hors-distribution. Plus
généralement, cette stratégie favorise la parallélisation des apprentissages et l’adaptabilité
des modèles.

Pour finir, cette thèse explore comment les méthodes d’ensemble peuvent améliorer
l’alignement des intelligences artificielles. Face à l’essor rapide des modèles de langues
comme ChatGPT, cet alignement est crucial pour répondre aux nombreuses préoccupa-
tions éthiques actuelles. Pour prendre en compte la diversité des préférences humaines,
nous proposons une stratégie de politiques multiples en apprentissage par renforcement,
rendant plus transparent l’alignement sur le monde, dans toute sa diversité.
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I N T R O D U C T I O N

L’union fait la force

Homère, L’Iliade

1.1 Artificial intelligence: a historical perspective

The concept of artificial intelligence (AI) machines traces back to the previous century,
beginning as a subject of science fiction, with Karel Čapek first coining the term “robot” in
1920 and Isaac Asimov exploring the concept in short stories from the 1940s. The notion
then evolved into a tangible reality, from Turing’s machine-breaking work during World
War II, the seminal 1956 Dartmouth Workshop to the triumph of IBM’s Deep Blue in 1997

[Cam+02]. Initially, the community was optimistic about achieving AI within a few years.

A successful AI revolution could usher a new era of enhanced intellectual capabil-
ities, much like the industrial revolution enhanced human physical capabilities. The
potential applications are wide-ranging, from education, healthcare, personal assistants,
autonomous vehicles to AI-driven scientific research for addressing global challenges
like climate change. Optimistic visionaries anticipate a world of material and cultural
abundance, universal income, and freedom from some labor, enabling humans to focus
on selected/creative/interesting tasks.

Despite early optimism, traditional expert systems encountered numerous setbacks,
leading to periods known as “AI winters” filled with disillusionment and skepticism. In
response, machine learning (ML) [Bis06] proposed a data-centric paradigm shift. The key
element in ML is the statistical algorithm that learns automatically through experience
and data. More specifically, models are learned for a target task using some training data,
intending to achieve good accuracy (i.e., generalize well) on new samples not seen during
training. While early and simple ML models achieved some success in tasks like spam
filtering, genome-wide association studies, movie recommendation [Tös+09], and medical
diagnosis, they often fell short in large-scale real-world applications.

1



2 introduction

1.2 Deep learning

The prominence of AI in today’s society is primarily caused by the success of deep learn-
ing (DL) [Goo+16], a specialized subfield of ML involving deep neural networks (DNNs).
These models were biologically inspired by the human brain, yet actually are simply a
collection of nested (neuron) functions, each of which is a linear transformation usually
followed by a non-linear activation function. The term deep refers to the large number of
layers stacked successively. DL became the dominant approach in computer vision (CV)
after the success in 2012 of AlexNet [Kri+12] at the ILSVC competition [Rus+15] on
ImageNet, a large dataset made of 1.28M training images and 1000 classes.

Then, DL powered breakthroughs to problems that seemed unsolvable by traditional
ML, some of which are depicted in Figure 1.1. Stable Diffusion [Rom+22] can generate
realistic photographs of the pope in a down puffer coat. ChatGPT [Ope23] could pass the
bar exam and write 40 per cent of the code for a software engineer. Beyond these famous
applications, DL is the core paradigm behind current high-precision machine transla-
tion [Vas+17], autonomous driving systems [Sun+20], accelerating physics simulations
[Bre+20], predicting protein folding structures [Jum+21], estimating molecular toxicity
[Adv14], optimizing data center cooling systems [Eva+16], and managing magnetic coils
in nuclear fusion reactors [Deg+22], etc, to name a few.

(a) Alphago. (b) Stable Diffusion. (c) Canopy. (d) ChatGPT.

Figure 1.1. – A glimpse into the transformative and successful applications of DL. In Figure 1.1(a),
AlphaGo [Sil+16] surpasses human performance in the strategic board game of Go. In Fig-
ure 1.1(b), Stable Diffusion [Rom+22] is prompted to generate “a photograph of an astronaut
riding a horse”, illustrating how AIs can imitate human creativity. In Figure 1.1(c), sub-meter
resolution canopy height maps are generated from aerial and GEDI lidar data [Tol+23], offering
climate scientists a powerful tool to understand deforestation. In Figure 1.1(d), the now famous
ChatGPT [Ope23] can natively discuss with humans and augment their intelligence.

Scaling. The cornerstone of the DL revolution is scalability: results have consistently
improved when increasing the number of parameters [Kap+20] or of training data
[Hof+22], without hitting any apparent limitations. Such rapid progress was enabled by
engineering advances in graphics processing units (GPUs) hardware adhering to Moore’s
law, the advent of cloud computing, more efficient algorithms, and the emergence of
frameworks like PyTorch [Pas+19] or platforms like HuggingFace [Wol+20]. The field has
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benefited from substantial investments from major tech companies and from numerous
collaborations fostered by the prevalent open-source philosophy. Over the past decade, the
computational power used for training AI models has surged by a factor of one hundred
million, while the cost has significantly diminished. We have transitioned from training
models on relatively small datasets to feeding them with the entire internet’s wealth
of information. This scaling up predictably enhances results across a broad spectrum
of tasks, but also induced unpredicted emergent abilities [Wei+22b] surfacing abruptly
in (very) large models: examples include in-context learning, or multi-step reasoning
[Wei+22c; Lam+22]. These emergent properties underscore the success of ChatGPT and
further drive the scaling trend. They also raise questions about the potential capabilities
and risks of LLMs, should we continue to scale them up.

Unified framework. Another paradigm that has significantly contributed to the success
of DL is the unification of modalities and tasks under a single & simple framework.
For example, the networks’ architectures are now unified; though historically computer
vision used convolutional [Fuk80; Kri+12] and natural language processing recurrent
networks [Rum+85], most state-of-the-art are now with Transformers [Vas+17; Dos+21].
This architecture was first designed for machine translation. Moreover, foundation models
[Bom+21] have emerged as the standard unified paradigm to learn DNN’s weights: rather
than trained from scratch on the target task, weights are now first pre-trained through
self-supervision on vast corpus of data and then fine-tuned [Oqu+14; Yos+14] on the
target task. The different trainings usually leverage the same tools and “tricks”, such as
the Adam [Kin+15] optimizer and general-purpose regularizations (dropout [Gal+16] or
weight decay [Kro+91]). This unifying paradigm enables the transfer of knowledge and
findings across DL setups.

1.3 Out-of-distribution generalization

The increasing importance of AI in our lives and society demands a close examination
of potential failure cases. As large DNNs can actually memorize their training dataset
[Zha+17] by latching onto specific patterns, they may struggle to generalize on new test
samples. The generalization gap [Kaw+17] between train and test performance is a well-
known phenomenon in ML usually named overfitting. Critically, this generalization gap
worsens under distribution shifts [Arj+19; Gul+21], when the test distribution differs from
the training distribution. These failures for out-of-distribution (OOD) generalization is a
major limitation of DL, which can negatively impact human lives in several real-world
contexts. We name a few below.

• Uncontrolled deployment: although training is centralized, the model is used in the
wild for diverse scenarios where the input distribution can change unexpectedly.

• Constrained budget, causing training datasets of limited size without representing
all possible domains. For example, it would be impractical to train an autonomous
vehicle’s object detection system on all possible weather conditions and in all cities.
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• Dynamic scenarios, with a temporal shift between train and test. For example, when
analyzing images from social media, where trends can change rapidly.

• Subpopulation shifts, as some (minority) groups may be less represented in the
training dataset. This highlights a critical connection between OOD generalization
and fairness. Indeed, errors induced by distribution shifts can lead to severe eth-
ical issues: examples include facial recognition systems [Gro+19], loan approvals
[Ang+21], or medical diagnoses [Lar+20]. Not only might DNNs replicate the biases
found in the data—they confuse correlation and causation—but they also exhibit a
simplicity bias [Sha+20]: DNNs tend to rely on the most straightforward features,
potentially overlooking fairer explanations.

More broadly, the ability of a model to effectively handle OOD scenarios is a key
indicator of its intelligence. Our cognitive abilities as humans allows us to create beyond
our previous experiences, to solve new problems, and to find solutions when facing
novel tasks in unseen situations. Therefore, OOD generalization appears as a necessary
milestone in the journey towards more general systems.

The imperative of alignment. Assuming we continue to scale the architectures and
improve DL performances in the future, we may then be dealing with potential new
risks. Such powerful models could arm malicious users with unprecedented power, fuel
widespread censorship or manipulation by totalitarian private entities or governments,
or, more speculatively, seize global control [Hen+22; Hen23], leading to catastrophic out-
comes. It appears necessary to ensure that the models remain aligned [Tay+16; Ken+21;
Ngo+22] with core values. Recently, reinforcement learning from human feedback (RLHF)
[Chr+17b] emerged as the leading alignment paradigm to fine-tune large language mod-
els (LLMs). Specifically, given a proxy reward approximating human preferences, a LLM
optimized on this proxy reward is expected to make decisions for new inputs aligned
with those preferences. Thus, the LLM needs to handle a wide range of OOD inputs,
emphasizing that alignment is fundamentally an OOD challenge, as further detailed in Sec-
tion 7.2.5.3. Given the importance of alignment for AI safety, this strengthens the need
for developing DL models that can effectively deal with unanticipated inputs.

1.4 Ensembling and contributions

This thesis seeks to improve the generalization capabilities of deep neural networks.
To this end, we turn to a traditional, straightforward, and highly practical strategy: en-
sembling. In essence, instead of relying on a single model, we combine multiple models.
From a scaling perspective [Chi+20], rather than increasing the number of parameters
inside one model, we scale the number of models.

The most common ensembling (ENS) strategy involves (i) training multiple models
independently, (ii) passing the test input to each model, and (iii) averaging their predic-
tions. Such functional ensembling is a very natural strategy, used for decades in ML [Nil65;



1.4 ensembling and contributions 5

Han+90; Bre96; Die00], which still remains a standard solution for real-world applications
and Kaggle competitions [Hin20].

The first key concept in ensembling is diversity. Indeed, ensembling succeeds if it
reduces the variance of the predictions; this happens if its members are diverse and com-
plementarity, meaning that they have different failure cases, allowing them to compensate
for each other’s errors. The other key concept in this thesis is efficiency. Indeed, the naive
form of functional ensembling is costly as it requires multiple trainings and inferences,
limiting its applicability in real-world scenarios.

The core challenge lies in the intricate trade-off between efficiency and diversity. In
particular, traditional strategies to improve one often hurts the other. For example, let’s
consider a baseline weight sharing strategy [Lee+15] that shares weights across models;
although this may improve efficiency, this would unfortunately homogenize the models
and thus reduce diversity. As another example, consider members that predict randomly:
these members may be highly diverse, but their ensemble would perform badly. This
(naive) example highlights the importance of another criterion for accurate ensembling,
members’ accuracies, in tension with diversity and efficiency.

In other words, the principal challenge of our thesis can be summarized as follows:

How to best trade off between efficiency, diversity, and members’ accuracies in ensembling?

The contributions of this thesis aim at proposing different solutions to this question, as
presented in the subsequent chapters.

• Chapter 2: ensembling

We first review the literature on ensembling, and propose a new error bound for
ensembling strategies under distribution shifts. This explains why and when ensem-
bling particularly excels, and highlights that diversity becomes even more critical
under distribution shifts.

• Chapter 3: dice [Ram+21a]
We introduce a new regularization named DICE that increases diversity by removing
irrelevant redundant information across members of the ensemble.

• Chapter 4: diverse weight averaging [Ram+22b]
We present the main contribution of this thesis for efficient ensembling: instead
of averaging the predictions, we propose averaging the weights of the models. We
show that this weight averaging (WA) is possible (despite non-linearities in the
architectures) when models are fine-tuned from a shared pre-trained initialization.

• Chapter 5: ratatouille [Ram+23a]
In this chapter, we demonstrate that the conditions to apply WA can be relaxed. The
proposed ratatouille averages the weights of models fine-tuned from different ini-
tializations, inter-trained on different tasks; these inter-trainings enhance diversity
across initializations and thus improve final performance for OOD generalization.

• Chapter 6: rewarded soups [Ram+23b]
We explore how WA can help to manage the diversity of human opinions when
aligning large language models with reinforcement learning from human feedback
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(RLHF); rather than optimizing a single network for a given reward, we uncover a
set of Pareto-optimal weights across the entire space of preferences.

In the Appendix, we detail other related works published during this thesis.

• Appendix D: mixmo [Ram+21b]
This chapter details our first attempt toward efficient ensembling, and proposes
fitting multiple subnetworks within a single base model through a multi-input
multi-output strategy named MixMo. Although successful, we move this work to
the Appendix as it does not fit within the foundation model paradigm.

• Appendix E: fishr [Ram+22a]
This chapter considers a key limitation of ensembling strategies; their inability to
tackle spurious correlations. The proposed Fishr regularization promotes invariance
across training domains. We move this work to the Appendix as it does not involve
ensembling.

In details, this thesis is based on the following papers, sorted in chronological order:

• Alexandre Ramé and Matthieu Cord. “DICE: Diversity in Deep Ensembles via
Conditional Redundancy Adversarial Estimation”. In: ICLR. 2021.

• Alexandre Ramé, Remy Sun, and Matthieu Cord. “MixMo: Mixing Multiple Inputs
for Multiple Outputs via Deep Subnetworks”. In: ICCV. 2021. The code is open-
sourced: https://github.com/alexrame/mixmo-pytorch.

• Alexandre Ramé, Corentin Dancette, and Matthieu Cord. “Fishr: Invariant Gradient
Variances for Out-of-Distribution Generalization”. In: ICML. 2022. The code is open-
sourced: https://github.com/alexrame/fishr.

• Alexandre Ramé, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy,
Patrick Gallinari, and Matthieu Cord. “Diverse Weight Averaging for Out-of-
Distribution Generalization”. In: NeurIPS. 2022. The code is open-sourced: https:
//github.com/alexrame/diwa.

• Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and
David Lopez-Paz. “Model Ratatouille: Recycling Diverse Models for Out-of-
Distribution Generalization”. In: ICML. 2023. The code is open-sourced: https:
//github.com/facebookresearch/ModelRatatouille.

• Alexandre Ramé, Guillaume Couairon, Mustafa Shukor, Corentin Dancette, Jean-
Baptiste Gaya, Laure Soulier, and Matthieu Cord. “Rewarded soups: towards Pareto-
optimal alignment by interpolating weights fine-tuned on diverse rewards”. In:
arXiv preprint (2023). The code is open-sourced: https://github.com/alexrame/re
wardedsoups.

Additionally, I contributed to other projects listed below; though they consider ensem-
bling strategies and refine our understanding on important questions, they are not further
investigated in this thesis for the sake of brevity.

• Rémy Sun, Alexandre Ramé, Clément Masson, Nicolas Thome, and Matthieu Cord.
“Towards efficient feature sharing in MIMO architectures”. In: CVPR Workshop. 2022.

https://github.com/alexrame/mixmo-pytorch
https://github.com/alexrame/fishr
https://github.com/alexrame/diwa
https://github.com/alexrame/diwa
https://github.com/facebookresearch/ModelRatatouille
https://github.com/facebookresearch/ModelRatatouille
https://github.com/alexrame/rewardedsoups
https://github.com/alexrame/rewardedsoups
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• Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. “Dy-
Tox: Transformers for Continual Learning with DYnamic TOken eXpansion”. In:
CVPR. 2022. The code is open-sourced: https://github.com/arthurdouillard/d
ytox.

• Alexandre Ramé, Jianyu Zhang, Léon Bottou, and David Lopez-Paz. “Pre-train,
fine-tune, interpolate: a three-stage strategy for domain generalization”. In: NeurIPS
Workshop. 2022.

• Mustafa Shukor, Corentin Dancette, Alexandre Ramé, and Matthieu Cord. “UnIVAL:
Unified Model for Image, Video, Audio and Language”. In: arXiv preprint (2023).

Except Fishr, all those works study ensembling, where diversity and efficiency are
systematically key contributions. This is highlighted in Table 1.1.

Table 1.1. – Summary of the PhD publications.
Name Conference Chapter Diversity strategy Efficiency strategy

DICE [Ram+21a] ICLR 2021 Chapter 3 Diversity regularization Weight sharing
MixMo [Ram+21b] ICCV 2021 Appendix D Data augmentation Subnetworks
MixShare [Sun+22] CVPR Workshop 2022 ✗ Data augmentation + unmixing Subnetworks

DyTox [Dou+22] CVPR 2022 ✗ Different target tasks Weight sharing
Fishr [Ram+22a] ICML 2022 Appendix E ✗ ✗

DiWA [Ram+22b] NeurIPS 2022 Chapters 2 and 4 Hyperparameters and data orders Weight averaging
Interpolate [Ram+22c] NeurIPS Workshop 2022 ✗ Diverse auxiliary tasks Weight averaging
Ratatouille [Ram+23a] ICML 2023 Chapter 5 Diverse auxiliary tasks Weight averaging

Rewarded soups [Ram+23b] Under submission Chapter 6 Diverse rewards Weight averaging
UniVAL [Shu+23] Under submission ✗ Diverse tasks and modalities Weight averaging

As a final note, I also contributed to the organization of the PRINCE out-of-distribution
generalization challenge: Eustache Diemert, Matthieu Kirchmeyer, Thibaud Rahier, Alain
Rakotomamonjy, Alexandre Ramé, and Ugo Tanielian. “PRINCE: PRomoting INvariance
for Classification of browsing journeys across Environments”. In: ECML PKDD (2022).
The results of the competition are available: https://codalab.lisn.upsaclay.fr/compe
titions/3353.

https://github.com/arthurdouillard/dytox
https://github.com/arthurdouillard/dytox
https://codalab.lisn.upsaclay.fr/competitions/3353
https://codalab.lisn.upsaclay.fr/competitions/3353
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T H E U N R E A S O N A B L E E F F E C T I V E N E S S O F E N S E M B L I N G
F O R O U T- O F - D I S T R I B U T I O N G E N E R A L I Z AT I O N

Introduction

First, we shed light on the related literature in machine and deep learning: we recall
the out-of-distribution (OOD) generalization challenge, the bias-variance decomposition
of the error, and how ensembling reduces variance.

Then, we demonstrate that variance is intrinsically related to shifts in input distribu-
tions (i.e., diversity shifts), while bias is inherently related to shifts in output conditional
distributions (i.e., correlation shifts). These theoretical contributions refine our under-
standing of OOD generalization, and in particular explain why the functional ensembling
of diverse members excels under diversity shifts. These insights were first published
in the theoretical section from: Alexandre Ramé, Matthieu Kirchmeyer, Thibaud Rahier,
Alain Rakotomamonjy, Patrick Gallinari, and Matthieu Cord. “Diverse Weight Averaging
for Out-of-Distribution Generalization”. In: NeurIPS. 2022.

Overall, we motivate our goal of diverse and efficient ensembling, and discuss how these
two research directions have been previously addressed in the literature, the underlying
challenges, trade-offs, and limitations of existing strategies.

2.1 Context: the fundamentals of deep learning

We first briefly explain how deep neural networks are trained in deep learning (DL) in
a supervised setting, which is the key focus of this thesis.

Remark 2.1. This thesis will primarily focus on classification among a predefined number of
classes in computer vision (CV), a complex task due to the unstructured nature of images. However,
thanks to the unification of architectures and training paradigms across modalities and tasks, all
our findings could potentially be extended to various other setups. This will be done in our last
Chapter 6, where we consider ensembling of models trained with reinforcement learning [Rus+16]
in a wide range of setups: for example in text-to-text tasks, but also in multimodal tasks such
as image-to-text captioning [Ren+17], visual question answering [Ben+17], and text-to-image
generation with diffusion models [Rom+22].

9
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Figure 2.1. – The fundamental concepts in deep learning. The first row represents the names
and notations used along this thesis, the second row illustrates the different concepts, while the
third row depicts the corresponding mathematical objects. Specifically, an image x represented as
a RGB matrix is given as input to a black-box featurizer Φ, that extracts an embedding vector z,
representing in a structured way the different information in the image. This embedding is then
fed to a (usually linear) classifier w, whose goal is to separate the different classes Y ; specifically,
w predicts a probability distribution ŷ that should be close to the true label y.

2.1.1 How to build a deep neural network

The key fundamental elements in a DNN are depicted in Figure 2.1. We analyze an
input x ∈ X , which in the context of CV typically refers to an image represented as a
matrix of red green blue (RGB) pixels. The DNN f maps x to a prediction ŷ = f(x, θ) in
the label space Y of size K. Specifically, f (·, θ) : X → Y is usually decomposed into a
featurizer Φ parameterized by the weights ϕ, onto which we plug a dense linear classifier
w parameterized by the weights ω; hence, θ = (ω, ϕ). The featurizer transforms a non-
structured input into a feature embedding (denoted z) in a space where the K classes should
ideally be linearly separated. These embeddings can then be processed arithmetically. For
instance, the embeddings of two images containing the same object will usually exhibit
a high cosine similarity (this would not hold if the similarity were computed in pixels).
The classifier aims at detecting class boundaries in this embedding space, to allocate to
each potential class a probability, all of which sum up to 1. The class with the highest
predicted probability is chosen as the class prediction.

A significant portion of the DL literature is devoted to the design of the optimal
architecture as a series of linear and non-linear transformations. The main difference
between ML and DL is the number of layers in this featurizer. Some fundamental units
of DNN architectures include:
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• convolutional layers [Fuk80], the primary building block of convolutional neural
network (CNN) architectures,

• self-attention layers [Vas+17], the primary building block of Transformer architec-
tures [Vas+17; Dos+21],

• ReLU function [Aga18], a non-linear activation function applied element-wise which
only retains positive values,

• normalization layers such as batch normalization (BN) [Iof+15],

• residual connections [He+16], adding direct connections between blocks to mitigate
the vanishing gradient problem [Hoc+01].

Crucially, this thesis does not delve into these design choices; we aim to deliver
architecture-agnostic insights applicable to any DNN, where understanding or knowl-
edge of the various underlying architectural choices are not required. Consequently, we
treat the deep featurizer as a non-linear black box.

2.1.2 How to train a deep neural network

Previous section has described the core components of a DNN f (·, θ). Yet the key
question remains: how to learn the appropriate weights θ?

2.1.2.1 Empirical risk minimization

Supervised DL is based on the statistical data-centric learning theory from [Vap92;
Vap99]. Given pairs of (input x, label y), we want to learn a model that from x can predict
ŷ close to y. To measure the distance between a prediction ŷ = f(x, θ) and a class label y,
we consider a loss function ℓ : Y2 → R+. In classification, the loss is usually the categorical
cross-entropy:

ℓ(ŷ, y) = −
K∑

c=1

yc log ŷc, (2.1)

but we will also consider the mean-squared error (MSE) loss to simplify our proofs.

More specifically, we rely on a training (source) domain, denoted S with distribution
pS . In theory, we would seek θ minimizing the source error on the full training domain
S: ES(θ) = E(x,y)∼pS [ℓ(f(x, θ), y)]. In practice, we usually have only an empirical dataset
DS = {(x1, y1), ..., (xnS , ynS )} of nS i.i.d. samples from the underlying training distribu-
tion pS(X,Y ). Then, we seek θ minimizing the source empirical error:

ÊS(θ) =
∑

(x,y)∈DS

[ℓ(f(x, θ), y)]. (2.2)

This strategy is called empirical risk minimization (ERM).
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Algorithm 2.1 Procedure to optimize a neural network with ERM through SGD.
input: a model f with trainable weights θ
input: a dataset DS

input: a loss function ℓ
input: a learning rate η and a batch size b

1: while stopping criterion not satisfied do
2: (x,y)← sample mini-batch of size b from DS

3: Forward pass: ŷ ← f(x, θ)
4: Compute loss: ÊS ← ℓ(ŷ,y)
5: Compute the gradients: δ ← ∇θÊS
6: Update all parameters: θ ← θ − ηδ
7: end while

2.1.2.2 Stochastic gradient descent

To optimize this ERM objective, the now standard strategy is stochastic gradient descent
(SGD). As summarized in Algorithm 2.1, we iteratively update the weights θ in the
direction opposite to the gradient of the loss w.r.t. the weights θ. Specifically, we sample a
batch with b samples from DS , feed it into the model f (·, θ), and compare the predictions
ŷ to the ground-truth labels y with the loss ℓ. Gradient computation is achieved by
backpropagation [LeC+99] through the various layers of the architecture. The learning
rate η controls the gradient step size.

Assuming proper convergence of SGD, and thanks to the overparameterization of the
model and the universal approximation theorem [Cyb89], we expect this training loss to
be relatively small; f will usually fit the training data almost perfectly.

2.1.2.3 Improved training procedures

While the architecture design and scale can significantly impact the model’s perfor-
mance, the training procedure is also crucial [Wig+21] and can go beyond SGD. For
example, the most popular optimization algorithm is actually Adam [Kin+15]. More-
over, data augmentation is also essential, especially in CV where mixed sample data
augmentation (MSDA) (such as Mixup [Zha+18a] or CutMix [Yun+19]) are widely used.

Notations. As stated earlier in the context of architectural design, the choice of training
configuration will not be the primary focus of this thesis. Thus, we simply denote the
training configuration as c, encompassing all training choices and sources of randomness
in the learning (e.g., initialization, hyperparameters, training stochasticity, data augmenta-
tion, epochs, etc.) excluding the fixed dataset DS . Then, we denote lS = {DS , c} a learning
procedure on domain S. When necessary, we write θ(lS) to refer to the weights obtained
after optimization of ÊS(θ) w.r.t. θ on DS with configuration c.
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Correlation shift:
𝑃!"#$% 𝑌|𝑋 ≠ 𝑃!&'! 𝑌|𝑋

Diversity shift:
𝑃!"#$% 𝑋 ≠ 𝑃!&'! 𝑋

Figure 2.2. – Visualization of the two types of distribution shifts. Thanks to the bias-variance
decomposition of the error Equation (BV), we will show that they have drastically different con-
sequences on performances: while diversity shift increases the variance term, correlation shift
increases the bias term. Image from [Ye+22].

2.1.3 Generalization

ID generalization. The generalization abilities of ML algorithms are evaluated on a
test set, i.e., a set of samples that were not seen during training. Thus, denoting T the
(target) test domain with distribution pT , we want θ to have small test target generaliza-
tion error: ET (θ) = E(x,y)∼pT [ℓ(f(x, θ), y)]. To this end, the learned model f (·, θ) should
ideally capture a robust mechanism, not just memorize all the training data [Zha+17].
The difference between the loss in train and in test is often referred to as the generalization
gap [Kaw+17]. In the in-distribution (ID) setup, the train and test distributions are the
same, i.e., pS(X,Y ) = pT (X,Y ).

OOD generalization. In this thesis, we focus on a more complex setup, named out-
of-distribution (OOD) generalization, where pT (X,Y ) ̸= pS(X,Y ), i.e., the test (target)
distribution is different from the train (source) distribution. As highlighted in Section 1.3,
OOD generalization under distribution shifts is critical to ensure applicability in real-
world applications, where train and test hardly ever follow the same distributions. To
better understand this key challenge, [Ye+22] decomposed distribution shifts into two
types, visualized in Figure 2.2 and detailed below:

• diversity shifts (a.k.a. covariate shift) when pS(X) ̸= pT (X), i.e., when the marginal
input distributions differ. In this setup, the train and test distributions comprise
data from related but distinct domains, for instance on PACS [Li+17] where we have
pictures and drawings of the same objects.

• correlation shifts (a.k.a. concept shift) when pS(Y |X) ̸= pT (Y |X), i.e., when the
posterior covariate distributions differ. In this setup, the correlation between the
input and the label depends on the domain: for instance on ColoredMNIST [Arj+19]
where the color is spuriously correlated with the label.
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Benchmarks. We primarily evaluate our approaches on standard image classification
datasets. The first two papers [Ram+21a; Ram+21b] of this thesis used CIFAR-{10,100}
[Kri+09]. Then, two years ago, the DomainBed [Gul+21] benchmark was introduced; it
aimed at fairly evaluating the different OOD approaches and became the standard in
the community. It includes five real-world multi-domain CV classification datasets, under
which diversity shifts dominate.

• PACS [Li+17] includes domains {Art, Cartoon, Photo, Sketch}, with 9,991 examples
and 7 classes.

• VLCS [Fan+13] includes photographic domains {Caltech101, LabelMe, SUN09,
VOC2007}, with 10,729 examples and 5 classes.

• OfficeHome [Ven+17] includes domains {Art, Clipart, Product, Real}, with 15,588

examples and 65 classes.

• TerraIncognita [Bee+18] contains photographs of wild animals taken by camera
traps at locations {L100, L38, L43, L46}, with 24,788 examples and 10 classes.

• DomainNet [Pen+19] has six domains {Clipart, Infograph, Painting, Quickdraw,
Real, Sketch}, with 586,575 examples and 345 classes.

Moreover, DomainBed also includes the following synthetic dataset, under which corre-
lation shifts dominate.

• Colored MNIST [Arj+19] is a variant of the MNIST handwritten digit classification
dataset [LeC+10] with domain {90%, 80%, 10%}: the correlation strengths between
color and label vary across domains. It contains 70,000 examples and 2 classes.

Critically, all these datasets are multi-domain, i.e., they contain several domains and
each domain follows its own distribution. Each domain is successively considered as
the test domain while others are for training and validation; this enables fair evaluation
of generalization abilities to new domains. Moreover, DomainBed imposes a standard
training setup and a strict evaluation protocol, detailed below.

• Each domain is split into 80% (used as training and testing) and 20% (used as
validation for hyperparameter selection) splits.

• The network is a ResNet-50 [He+16] pre-trained on ImageNet, with frozen batch
normalization layers and a dropout layer just before the classifier.

• The optimizer is Adam [Kin+15]. All runs are trained for 5k steps, except on Do-
mainNet for 15k steps [Arp+21; Cha+21a].

• The hyperparameters follow either the mild or extreme distributions from Table 2.1.

• The experiments are repeated 3 times: the reported numbers will be the means and
the standard errors.

The bitter lesson was that, when DomainBed was published, none of the existing meth-
ods performed significantly and consistently better than the standard ERM. Fortunately,
the approaches proposed in this thesis will change this situation.
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Table 2.1. – Hyperparameters, their default values and distributions for random search.

Hyperparameter Default value
Random distribution

Extreme Mild

Learning rate 5 · 10−5 10U(−5,−3.5) [1, 3, 5] · 10−5

Batch size 32 2U(3,5.5) 32
ResNet dropout 0 [0, 0.1, 0.5] [0, 0.1, 0.5]

Weight decay 0 10U(−6,−2) [10−6, 10−4]

2.1.4 Bias-variance decomposition

To better understand and quantify the different sources of generalization error of our
DNN, we follow the bias-variance decomposition of the expected error from [Koh+96].

Notations and assumptions. In the rest of this chapter, ℓ is the mean-squared error
(MSE) for simplicity: yet, our results may be extended to other losses such as the cross-
entropy following [Dom00; Woo+23]. We consider a model with weights θ(lS) trained with
the learning procedure lS . We assume that there is no noise in the data; then the labeling
function fS : X → Y on S is defined on the source input support XS = {x ∈ X/pS(x) > 0}
by ∀(x, y) ∼ pS , fS(x) = y. Similarly, fT : X → Y the labeling functions on T is defined
on the target input support XT = {x ∈ X/pT (x) > 0} by ∀(x, y) ∼ pT , fT (x) = y.

Bias and variance. [Koh+96] decomposed the expected error w.r.t. the learning proce-
dure ls into two terms:

ElSET (θ (lS)) = E(x,y)∼pT

[
bias2 (x, y) + var (x)

]
, (BV)

where, with f̄S (x) = ElS [f (x, θ (lS))] the expected prediction:

• the bias bias(x, y) = y − f̄S (x) measures how far off in general the predictions are
from the ground-truth label,

• the variance var(x) = ElS

[(
f(x, θ(lS))− f̄S (x)

)2] measures how much the predic-
tions vary between different models.

In the traditional statistical learning theory, achieving good generalization usually re-
quires finding a fine balance between these two terms. Indeed, it’s generally assumed
that as we add more parameters, the network becomes more flexible, thus the bias is
reduced yet the variance increases. In details:

• small ML models with a limited number of parameters tend to have high bias but
low variance. Such models are too simplistic to capture the intricate patterns in the
data, resulting in a problem called underfitting.

• large DNNs with many parameters tend to have low bias but high variance. Such
models are complex and flexible, thus capable of fitting their training data, but are
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prone to a problem called overfitting, meaning they adapt too closely to the training
data and would perform poorly on unseen data.

However, this traditional belief has been contested in the context of DL, this questioning
being illustrated by the double descent phenomenon [Nak+19; DAs+20]. When increasing
the model size, variance initially gets larger (consistently with traditional expectations);
yet, at a certain point, when the architecture becomes sufficiently large, this trend reverses
and variance gets smaller. In a similar spirit, the forthcoming Section 2.2.1 characterizes
the variance in the limit case of infinitely large networks; we show that variance does
not grow infinitely large, and depends mostly of the input shifts between train and test
distributions.

2.2 A new bias-variance theoretical understanding of distribu-
tion shifts

We introduce the two main theoretical contributions of this thesis, which explain how
the two kind of distribution shifts alter performance. First, in Section 2.2.1, we prove that
variance dominates under diversity shift; this relies on the fact that variance essentially
becomes a property of the train-test input distribution shifts for sufficiently large networks.
Second, in Section 2.2.2, we show that bias dominates under correlation shift. These
findings refine our understanding of the bias-variance trade-off and suggest different
strategies to enhance generalization for each kind of shift.

2.2.1 Variance and diversity shift

Figure 2.3. – Mean and variance of the predictions for Gaussian processes. Image from [Pér+13].
Intuitively, variance (grey area) across different predictions (blue lines) grows away from training
samples (green crosses).
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We relate variance to diversity shift [Ye+22] when the network gets infinitely large. We
fix the source dataset DS (with input support XDS

), the target dataset DT (with input
support XDT

) and the network’s initialization. We get a closed-form expression for the
variance of f over all other sources of randomness under Assumptions 2.1 and 2.2.

Assumption 2.1 (Infinite width). f is in the kernel regime [Dan17; Lee+17; Jac+18].

This Assumption 2.1 follows the theoretical evidence [Dan17; Lee+17] that, when f is
a sufficiently wide network, f behaves as a Gaussian process (GP). The corresponding
kernel K is the neural tangent kernel (NTK) [Jac+18] characterized only by the initializa-
tion of the weights θ. This approximation is useful because GPs are more interpretable
(see Figure 2.3) and more easily analyzed; in particular, their variances have a closed-
form expression, as further discussed in Appendix C.1.1.1. To simplify this expression
of variance, we make the following Assumption 2.2, further discussed and relaxed in
Appendix C.1.1.2.

Assumption 2.2 (Constant norm and low intra-sample similarity on DS). ∃(λS , ϵ) with
0 ≤ ϵ≪ λS such that ∀xS ∈ XDS

,K(xS , xS) = λS and ∀x′S ̸= xS ∈ XDS
, |K(xS , x

′
S)| ≤ ϵ.

This Assumption 2.2 states that training samples have the same norm (following stan-
dard practice [Lee+17; Ah-10; Gho+21; Ren05]) and weakly interact [He+20; Sel+22]. We
are now in a position to relate variance and diversity shift when ϵ→ 0.

Proposition 2.1 (Variance and diversity shift. Proof in Appendix C.1.1). Given f trained
on DS (of size nS) with NTK K, under Assumptions 2.1 and 2.2, the variance on DT is:

ExT∈XDT
[var(xT )] =

nS

2λS
MMD2(XDS

, XDT
) + λT −

nS

2λS
βT +O(ϵ), (2.3)

where MMD is the empirical maximum mean discrepancy in the RKHS of K2(x, y) = (K(x, y))2.
Moreover, λT = ExT∈XDT

K (xT , xT ) and respectively βT = E(xT ,x′
T )∈X2

DT
,xT ̸=x′

T
K2 (xT , x

′
T )

are the empirical mean similarities measured between identical (w.r.t. K) and respectively different
(w.r.t. K2) samples averaged over XDT

.

The statistical learning theory predicts that as the network becomes infinitely large,
the variance also becomes infinitely large. Proposition 2.1 counters this traditional un-
derstanding by providing a new characterization of the variance when the network is
sufficiently large to be in the kernel regime (as per Assumption 2.1). Then, the variance is
actually mainly governed by the distance between the source and target inputs, as mea-
sured by the maximum mean discrepancy (MMD), rather than the model’s complexity.

Critically for better understanding of OOD generalization, this MMD empirically esti-
mates shifts in input marginals, i.e., between pS(X) and pT (X). Then the first term in this
expression of variance is actually very similar to the diversity shift formula in [Ye+22]:
the MMD simply replaces the L1 divergence, another equivalent distance used in [Ye+22].
The other terms, λT and βT , both involve internal dependencies on the target dataset
DT : they are constants w.r.t. XDT

. In conclusion, at fixed DT and under our assumptions,
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Equation (2.3) shows that variance on DT decreases when XDS
and XDT

are closer (for
the MMD distance defined by the kernel K2) and increases when they deviate. Intuitively,
the further XDS

is from XDT
, the less the model’s predictions on XDT

are constrained
after fitting DS .

Remark 2.2. This theoretical analysis explains an observation named underspecification
[DAm+20]: models can behave differently in OOD despite similar test ID accuracy. This is
simply because variance is larger in OOD than in ID.

2.2.2 Bias and correlation shift (and support mismatch)

We now relate OOD bias to correlation shift [Ye+22] under Assumption 2.3.

Assumption 2.3 (Small ID bias). ∃ϵ > 0 small s.t. ∀x ∈ XS , |fS (x)− f̄S (x) | ≤ ϵ.

This Assumption 2.3 follows the traditional statistical theory; DNNs can fit their train-
ing distribution and thus have a small ID bias. This is realistic when they are sufficiently
large, trained on a large training dataset representative of the source domain S with an
appropriate training configuration c. Theses assumptions are relaxed in Appendix C.1.2.1.

Proposition 2.2 (Bias and correlation shift. Proof in Appendix C.1.2). With a bounded
difference between the labeling functions fT − fS on XT ∩XS , under Assumption 2.3, the bias on
the test target domain T is:

E(x,y)∼pT [bias
2(x, y)] = Correlation shift + Support mismatch +O(ϵ),

where Correlation shift =
∫

XT∩XS

(fT (x)− fS (x))2 pT (x)dx,

and Support mismatch =

∫

XT \XS

(
fT (x)− f̄S (x)

)2
pT (x)dx.

(2.4)

To understand Equation (2.4), we need to first observe that the labeling functions fT and
fS verify fT (x) = EpT [Y |X = x] and fS(x) = EpS [Y |X = x], ∀x ∈ XT ∩ XS . Then the first
term actually measures correlation shifts in posterior distributions between source and
target, as in [Ye+22]; this first term would increase in presence of spurious correlations
that would modify the labeling functions. A basic example is the ColoredMNIST dataset,
where color and label correlation is reversed at test time. Models that have learned the
color-label correlation from the source data will predict labels based on the color of the
digit rather than its shape, leading to wrong predictions in test and thus high bias.

In a more realistic scenario, instead of considering the input space, we can think in
terms of feature space. Replacing x with a feature z, the bias would increase if the
correlation between z and y is different in the source and target distributions. This
is why it’s important to learn a featurizer encoding inputs into a shared embedding
space containing minimal domain-dependent information. This would reduce the bias
introduced by potential spurious correlations between extracted features and labels when
the model is used in OOD.
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Remark 2.3. Less critical in this thesis, the second term is caused by support mismatch between
source and target. It was analyzed in [Rua+22] and shown irreducible in their “No free lunch for
learning representations for DG”.

Conclusion. This section proves that the two types of distribution shifts reduce perfor-
mance in two different ways. First, diversity shift increases the variance term; we show in
the following Section 2.3.2 that ensembling is helpful in this setup because ensembling is
actually a variance reduction strategy. Second, correlation shift increases the bias term.

Remark 2.4. The most successful methods to tackle bias and thus correlation shift usually involve
data balancing [Idr+22], robust optimization [Sag+20a], or domain invariance [Arj+19]. Specifi-
cally, in Fishr [Ram+22a], we introduce a novel regularization enforcing domain invariance in
the space of the gradients of the loss. Fishr was proven effective on ColoredMNIST and on
DomainBed, and to this day [Yu+23], remains one of the best strategies to tackle spurious correla-
tions. We have relegated Fishr to Appendix E as its contributions are orthogonal to the main focus
of this thesis: ensembling.

2.3 Diverse and efficient ensembling

2.3.1 Prediction averaging

In this thesis, we study how to best combine M models. The standard strategy is the
functional ensembling (ENS) which averages the networks’ predictions, as illustrated
in Figure 2.4. This ensembling strategy has been a popular research topic in machine
learning [Nil65; Wol92; Bre96; Die00; Rok10], leading to successful strategies such as
random forests [Ho95] or XGBoost [Che+16]. This trivially extends to the functional
ensembling of DNNs [Han+90; Kro+95; Zho+02]. We thus define the predictive function:

fENS(·, {θi}Mi=1) =
1

M

M∑

i=1

f(·, θi). (2.5)

Note that most approaches average the logits rather than the probabilities, as it (slightly
but consistently) works better empirically [Ju+18]. In particular, the recent DE [Lak+17]
highlighted the success of this simple strategy with independently trained DNNs for
better uncertainty estimation [Ash+20].

2.3.2 Bias-variance-covariance decomposition

For simplicity, we consider that the M models have the same architecture and that the
weights {θi}Mi=1 = {θ(l(i)S )}Mi=1 are obtained from M identically distributed (i.d.) learning
procedures. Then, Equation (BVC) extends Equation (BV) to ensembling: to take into
account the M models, the expectation is over the joint distribution LM

S = {l(i)S }Mi=1, thus
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Model 1

Input

Predictions 1

Model 2 Predictions 2

Averaged 
predictions

Figure 2.4. – The traditional functional ensembling, averaging the predictions for M = 2 models.

we denote fENS
(
·, LM

S

)
. Then, the expected generalization test error is decomposed into

three terms: bias, variance and covariance.

Proposition 2.3 (Bias-variance-covariance [Ued+96; Bro+05a]. Proof in Appendix C.1.3.).
Denoting f̄S (x) = ElS [f (x, θ (lS))], under i.d. learning procedures LM

S , the expected generaliza-
tion error on domain T of the ensembling of those M models over LM

S is:

ELM
S
ET
(
fENS

(
·, LM

S

))
= E(x,y)∼pT

[
bias2(x, y) +

1

M
var(x) +

M − 1

M
cov(x)

]
, (BVC)

where cov(x) = ElS ,l
′
S

[(
f(x, θ(lS))− f̄S (x)

) (
f(x, θ(l′S)))− f̄S (x)

)]
is the prediction covari-

ance between two models.

In comparison to Equation (BV), the following observations can be made:

• The bias is the same for the ensemble or for each of its i.d. members: combining
different models does not reduce the bias. Consequently, this suggests that ensem-
bling provides no benefits under correlation shift (where bias is the major issue).
According to this theory, ensembling would not work on ColoredMNIST, as latter
confirmed in Section 4.6.3.4.

• The variance of the ensembling is divided into two terms: (i) the variance of each
of its i.d. members divided by M , and (ii) a covariance term measuring the correla-
tions across members’ predictions. The covariance will be further analyzed in the
subsequent Section 2.3.3, but for now, let’s assume that it is small. Then, this theory
suggests that ensembling reduces the variance by a factor of M , effectively removing
variance for sufficiently large M . Moreover, we have previously noted variance is
large under diversity shift; this suggests that ensembling is highly beneficial under
diversity shift, for example on PACS. This is confirmed in the experiments along
this thesis.

In conclusion, this bias-variance-covariance analysis suggests that:

(i) ensembling is useless for correlation shift
(ii) but efficient for diversity shift,

(iii) as long as the covariance is small.
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2.3.3 Diverse ensembling

2.3.3.1 Diversity

Diversity: the art of thinking
independently together

Malcolm Forbes

Diversity to reduce covariance. In addition to the bias and variance of the members,
the generalization error of an ensemble also depends on the covariance of the predic-
tions {f(·, θi)}Mi=1. In the extreme case where all predictions are identical, the covariance
equals the variance and ensembling is no longer beneficial. This is because all models are
equivalent and the ensemble is no perform better than a single model. Conversely, if the
predictions are totally uncorrelated, then the variance is divided by M , making the ensem-
ble more accurate than its individual members. This highlights that the members should
have uncorrelated predictions. This lack of correlation across members’ predictions can
be summarized into the key notion of diversity, as defined in [Die00]:

Two classifiers are diverse if they make different errors.

Measure of diversity. The concept of diversity has been widely explored in the ensem-
bling literature [Bro+05b; Woo+23]. However, as pointed out in “Measures of Diversity
in Classifier Ensembles and Their Relationship with the Ensemble Accuracy” [Kun+03],
“measuring diversity is not straightforward because there is no generally accepted formal
definition”. Thus, numerous diversity measures have been introduced [Kun+03; Aks03;
Kor+19]. Considering two classifiers, the most standard ones consider N ij , the number
of times the first classifier is (correct if i = 1 or wrong if i = 0) and the second classifier
is (correct if j = 1 or wrong if j = 0). For example, N10 is the number of times that the
first classifier is correct but not the second. Then diversity can be measured with:

1. the ratio-error [Aks03], defined as the ratio N01+N10

N00 between the number of asyn-
chronous errors and of simultaneous errors.

2. the Q-diversity [Yul00], defined as 2 N01N10

N11N00+N01N10 (or equivalently 1 minus the
Q-statistic).

For ensembles with more than two members (M > 2), these pairwise similarity measures
are averaged over all possible pairs: higher values signify that members are less likely
to make errors on the same inputs. In our published papers, we have also considered
other prediction diversity measures such as the agreement score (the frequency that both
classifiers predict the same class), the Kohavi-Wolpert variance [Koh+96] (the variability
of the predicted class), and the entropy diversity (measuring overall disagreement). In
this thesis, we also use a diversity measure in features: the centered kernel alignment
complement (CKAC) [Kor+19], measuring to what extent the pairwise similarity matrices
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(computed on domain T ) are aligned—where similarity is the dot product between feature
embeddings extracted from two different networks (rather than the predictions).

2.3.3.2 Related work for diverse ensembling

The most standard ensembling baseline is deep ensembling (DE) [Lak+17], where the
weights are trained independently from different seed initializations. The diversity among
members primarily relies on the randomness of the initialization [Kol+91] and of the
learning procedure, hoping to converge towards different explanations for the training
data [For+19a; Wil+20]. This simple strategy already provides diverse models, yet, more
sophisticated approaches tried to further increase diversity, either explicitly (with diversity
regularizations) or implicitly (with additional randomness).

Explicit diversity. The first research direction is summarized by this quote from
[Bro+05a]: “why shouldn’t we try to find some way to capture the effect of the covari-
ance in the error function?”. Then, many works tried to explicitly reduce covariance by
encouraging diversity among the members. Most approaches explicitly regularize the
predictions: [Shu+18] force the members to have negatively correlated errors [Liu+99a;
Liu+99b]; [Mas20] theoretically motivated the minimization of a second-order PAC-Bayes
bounds. Others [Kar+19; Dab+20] enforced diversity in gradients; however, as stated in
[Dab+20], “promoting diversity of gradient directions slightly degrades the classification
performance on natural examples”. Overall, as far as we know, the unique approach more
accurate than the DE baseline is ADP [Pan+19], decorrelating only the non-maximal
predictions across members.

Remark 2.5. In contrast with previous diversity methods, some works suggested co-distillation
across members. For example, in [Zha+18b] the members learn to mimic each other by reducing
the KL between pairs of predictions. This was further extended in [Son+18; Guo+20; Chu+20;
Wu+20a; Che+20] and in [Lan+18], the latter using a weighted combination of logits as teacher
hence providing better distillation. The problem is that co-distillation reduces diversity by homoge-
nization; in our experiments, all these approaches underperform the DE [Lak+17] baseline.

Implicit diversity. The second research direction is to implicitly increase diversity;
they are usually more practical as they do not change the training objective. Some ap-
proaches introduced additional stochasticity into the training by providing subsets of data
to learners with bagging [Bre96], bootstrapping [Efr+94] or by backpropagating subsets of
gradients [Lee+16]. Yet, these strategies artificially reduce the number of training samples,
hurting performance for DNN that can overfit their training dataset [Nak+19], and thus
failed [Nix+20] because of reduced individual accuracies. One could think of boosting
[Fri01] strategies, yet [Lak+17] argued that sequential training is not suitable for DNNs
(mostly because of lack of parallelization). Some more successful approaches applied
different transformations [Dvo+19; Sti+20a], used different data augmentations [Wen+21] or
hyperparameters [Sin+16; Rui+20; Yan+20d; Wen+20]: these simple diversity tricks will be
fundamental in this thesis.
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2.3.4 Efficient ensembling

Functional ensembling cost. Ensembling is empirically successful; yet, the inherent
issue with ensembling is its cost, both in terms of time and memory, both during training
and during inference. These overheads increase linearly with the number of members:
handling M models requires M times more resources than handling a single model.

Related work for efficient ensembling. Despite this, naive functional ensembling
methods can still be competitive. For example, [Chi+20; Lob+20; Wan+20a; Zha+20b]
all found a memory split advantage (MSA): an ensemble of multiple smaller networks
typically outperforms a single larger network when compared at an equal number of
weights. However, this overhead still limits applicability in real-world applications, where
scalability is a crucial factor, and overall suggests a promising research direction:

How could we imitate the performance of ensembling within a single model?

Previous works tried to solve this challenge by proposing different efficient methods.

Weight sharing. Seminal methods simply share part of the architecture and weights
across models. These methods include the branch-based TreeNets architecture [Lee+15;
Son+18; Lan+18] where different classification branches are deployed on top of shared
low-level features. Monte Carlo dropout [Gal+16] and matrix factorization [Wen+19;
Dus+20] methods also reduce the memory costs, yet they still require multiple forward
passes at inference, and actually usually perform poorly [Ash+20].

Subnetwork. [Gao+19; Hav+21; Sof+20; Dur+20; Yan+20c] offer another efficient en-
sembling strategy, by fitting diverse subnetworks inside one large base network. The
idea is that over-parameterized DNNs [Fra+19; Mol+17] can be pruned without loss in
performance, and thus their use of parameterization could (in theory) be better opti-
mized. Then the question is how to prevent homogenization among those subnetworks.
Multiple strategies were proposed: [Gao+19] includes stochastic channel recombination;
[Dur+20] relies on predefined binary masks; in GradAug [Yan+20c], subnetworks only
leverage the first channels up to a given percentage. The multi-input multi-output (MIMO)
method [Hav+21] is notable, as it does not need structural differences among subnetworks.
MIMO’s main idea in to teach each subnetwork to classify only one of the multiple inputs
simultaneously provided; the subnetworks then learn to build their own paths in the base
architecture, without homogenization. Such a strategy [Sof+20] can be motivated with
arguments from information theory.

Remark 2.6. This simple yet effective MIMO technique motivated our MixMo approach
[Ram+21b], where we study how to best mix the multiple inputs given simultaneously during
training; this leads to replacing the suboptimal summing operation in MIMO with an improved
mixing mechanism based on patches and CutMix [Yun+19]. The key limitation is that MIMO
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and MixMo require training from scratch, and thus cannot transfer knowledge from foundation
models. Thus, for for sake of brevity, the details of MixMo are relegated in Appendix D.

Training sharing. Methods such as snapshot ensembles [Hua+17] and MotherNets
[Was+20] share part of the training process to reduce the training overhead. Specifically,
snapshot ensembles [Hua+17] create an ensemble of diverse snapshots visited along
a single training run with a cyclical learning rate. These methods effectively reduce
computational costs during training, yet they do not address the inference overhead.

Weight averaging. An effective strategy to reduce the inference overhead is to average
the weights of multiple models, rather than the predictions. Despite the non-linearities in
the architecture, and thus perhaps surprisingly, this weight averaging (WA) enables com-
bining into one single model the abilities from multiple models. This idea was initially
used in moving average strategies [Izm+18; Zha+19a] as a cheap alternative to snap-
shot ensembles [Hua+17]. Then, this WA showed promising results in OOD [Cha+21a;
Arp+21]. [Cha+21a] argued that WA succeeds in OOD because it provides flatter solu-
tion in the loss landscape. Though indeed WA reduces the maximum eigenvalue of the
Hessian, in Chapter 4 we will challenge this flatness-based explanation, and show that
WA actually improves generalization because of its similarity with functional ensembling.
Another issue of existing WA strategies is that the averaged models were highly similar,
as they were collected along a single training trajectory, thus limiting diversity and per-
formance. These discovered limitations form the basis of our works on WA, and will be
further detailed along this thesis.

2.4 Conclusion

The first goal of this chapter is to provide theoretical guarantees for the empirical
success of functional ensembling. Based on the bias-variance-covariance decomposition of
the error, we recall that averaging the predictions from multiple models reduces variance.
Moreover, we prove that, for sufficiently large DNNs, the variance is actually primarily
caused by diversity shifts in input marginal distributions. Therefore, this explains why
ensembling especially helps under diversity shift.

The second goal of this chapter is to explain that diversity in ensembling is fundamental,
yet complex to optimize directly. Following the limited success of existing diversity regu-
larization in predictions, we propose in the next Chapter 3 a novel explicit regularization
enforcing diversity at the feature embedding level.

The third goal of this chapter is to highlight that traditional functional ensembling
lacks scalability due to its high computational cost. The existing methods for efficient
ensembling correlate errors among members, thus reducing diversity. In Chapters 4 to 6,
we push the frontier of weight averaging methods and propose strategies to find accurate
and diverse models that remain averageable in weights.
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D I C E : D I V E R S I T Y I N E N S E M B L E S V I A C O N D I T I O N A L
R E D U N D A N C Y A D V E R S A R I A L E S T I M AT I O N

3.1 Introduction

Averaging the predictions of several models can significantly improve the generaliza-
tion ability of a predictive system. Indeed, ensembling reduces the variance (see Proposi-
tion 2.3) thanks to the diversity among their members. In deep ensembling (DE) [Lak+17],
the models are traditionally trained independently. The objective of this chapter is to further
increase the diversity across members to improve the ensemble performance.

As previously detailed in Section 2.3.3.2, several works [Mas20; Pan+19] explicitly reg-
ularize the predictions to increase diversity, yet with limited success; they systematically
reduced the individual performances of the members, highlighting the trade-off between
ensemble diversity and individual accuracies. Our idea is to encourage all members to predict
the same thing, but for different reasons. Therefore we explicitly enforce diversity in the fea-
ture space rather than directly within predictions. Intuitively, to maximize the impact of
a new member, extracted features should bring information about the label that is absent
at this time so unpredictable from features extracted by other members. The goal is to
remove irrelevant redundant information across members, e.g., information shared among fea-
tures extracted by different members, but useless for label prediction. This redundancy
may be caused by a detail in the image background (making members predict badly
simultaneously); the key point is that this detail can not be found in features extracted
from other images, even when they belong to the same class, as shown in Figure 3.1.

Our new learning framework is called DICE and is driven by information theory
and information bottleneck (IB) [Tis01; Ale+17] principles. Specifically, we follow the
minimum necessary information (MNI) principle [Fis20] which states that features should
be minimal (i.e., compressed) while keeping the necessary (i.e., relevant) information about
the label. The goal is to prevent overfitting on noise (memorization) while enabling the
learning of a robust predictive mechanism. Specifically, DICE applies the MNI criterion
[Fis20] to the ensemble of M members, and thus seeks to reduce (i) the mutual infor-
mation (MI) between features and inputs, but also (ii) the information shared between
members’ features conditioned upon the label. This second point prevents extracted fea-
tures from being redundant. Intuitively, this comes back to increasing the MI distance
between pairs of members, and thus benefitting from MI ability to detect arbitrary de-
pendencies between random variables (such as symmetry, see Figure 3.1). Lastly, a key
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Deep Ensembles

DICE (Ours)

Independent learning => same errors

Diversity loss => different errors
?

Class 1
features

distribution
Class 2

features
distribution

Predictable from each other
(e.g. with horizontal symmetry)

Unpredictable
from each other

Member 1 Member 2 Ensemble

Figure 3.1. – Motivation. Our DICE regularization prevents features extracted by different mem-
bers from being predictable from each other conditionally on the class. Intuitively, features extracted
by members (1, 2) from one input ( , ) should not share more information than features from
two inputs in the same class ( , ): we show this is equivalent to preventing the features extracted
by the first member for a first input ( ,-) to be informative enough to differentiate between (i) the
features extracted by the second member on the same input (-, ) and (ii) the features extracted
by the second member for another input from the same class (-, ).

contribution lies in the conditioning upon the label target, which we argue protects the
relevancy and informativeness of extracted features.

The uniqueness of mutual information as a distance measure between variables has been
applied in countless machine learning projects [Kim+19; Kem+20; Hje+19]. Yet, MI re-
mains challenging to estimate between high-dimensional features. In this work, we build
upon recent advances in neural estimation of MI [Bel+18], based on the Donsker-Varadhan
representation of the KL formulation of MI. Overall, to approximate our regularization,
we end up implementing an adversarial framework [Goo+14], where a discriminator pre-
vents features from being conditionally predictable from each other. In summary, DICE
increases diversity by adversarially reducing irrelevant redundant information among features.

• We introduce DICE, a novel objective to train ensembles of neural networks; based
on arguments from information theory, DICE seeks to minimize the conditional
redundancy between features (Section 3.2.1).

• We propose an implementation of DICE with a neural estimation of the conditional
redundancy, leveraging an adversarial learning framework (Section 3.2.2).

This chapter has led to the publication of the following paper: Alexandre Ramé and
Matthieu Cord. “DICE: Diversity in Deep Ensembles via Conditional Redundancy Adver-
sarial Estimation”. In: ICLR. 2021.
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3.2 DICE

Nobody knows what entropy really is

John Van Neumann to Claude Shannon

Notations. Given an input random variable X , a network parameterized by weights
θ is trained to extract the best possible feature embedding Z to model the distribution
pθ(Y |X) over the targets, which should be close to the Dirac on the true label. Our
approach is designed for ensembles with M members {θi}Mi=1 extracting features {Zi}Mi=1.
We average the M (logit) predictions during inference. In this section, for clarity and
simplicity, we consider M = 2; yet the published paper [Ram+21a] trivially extends DICE
to M > 2 members.

Quick overview of DICE. In Section 3.2.1, we justify the DICE objective with informa-
tion theory. Then in Section 3.2.2, we will detail our implementation of this DICE objective.
In brief, our training strategy will (i) train each member separately for classification with
information bottleneck (IB) while (ii) removing irrelevant shared information by adver-
sarial training with a discriminator. In conclusion, members should learn to classify with
conditionally uncorrelated features and thus increased diversity.

3.2.1 DICE training objective

3.2.1.1 Baseline: non-conditional objective

The MNI criterion from [Fis20] states that the learned features Z should ideally capture
only minimal compressed information from X , while preserving the necessary relevant
information about the label Y . We apply this principle to the ensembling of M = 2

members by considering the two Markov chains Zi ← X ↔ Y for i ∈ {1, 2}. Using entropy
as the measure of information, to satisfy the necessary constraint, I(Y ;Zi) should be
maximized. Then, regarding the minimality constraint, a first non-conditional formulation
is to consider that I(X;Zi) should be minimized. Mutual information being non-negative,
we transform these constraints into a first objective, recovering the IB objective from
[Ale+17], but simply applied independently to the M ensembling’s members.

IBβib
(Z1, Z2) =

1
βib

Compression︷ ︸︸ ︷
[I(X;Z1) + I(X;Z2)]−

Relevancy︷ ︸︸ ︷
[I(Y ;Z1) + I(Y ;Z2)]

= IBβib
(Z1) + IBβib

(Z2).

(3.1)
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The specificities of ensembling appear when we consider cross terms I(Z1;Z2), that
should be minimal according to the minimality constraint of the MNI.

IBRβib,δr(Z1, Z2) =
1
βib

Compression︷ ︸︸ ︷
[I(X;Z1) + I(X;Z2)]−

Relevancy︷ ︸︸ ︷
[I(Y ;Z1) + I(Y ;Z2)] +δr

Redundancy︷ ︸︸ ︷
I(Z1;Z2)

= IBβib
(Z1) + IBβib

(Z2) + δrI(Z1;Z2).

(3.2)

Analysis. In this baseline non-conditional criterion, relevancy encourages Z1 and Z2 to
capture information about Y . Compression & redundancy (R) split the information from
X into two compressed & independent views. The relevancy-compression-redundancy
trade-off depends on the values of βib & δr.

3.2.1.2 DICE: conditional objective H(Y)

H(Z2)

H(Z1)

H(X)

= I(Z1;Z2) = I(Z1;Z2|Y) = I(Z2;Y)
= I(Z1;Y)

Figure 3.2. – Venn information dia-
gram. DICE minimizes conditional
redundancy (green vertical stripes)
with no overlap with relevancy (red
diagonal stripes).

The problem is that the previous non-conditional
compression and redundancy terms in IBR also reduce
necessary information related to Y : indeed, it is detri-
mental to fully disentangle Z1 and Z2 while training
them to predict the same Y . This is shown on Figure 3.2
where redundancy regions (blue horizontal stripes )
overlap with relevancy regions (red diagonal stripes

). Indeed, as argued in [Fis+20], the minimality
constraints need to be conditioned on the label; thus,
we derive the following conditional constraints given Y :

I(X;Z1|Y ) = I(X;Z2|Y ) = I(Z1;Z2|Y ) = 0.

We transform these constraints into our main DICE objective:

DICEβceb,δcr(Z1, Z2)

= 1
βceb

[I(X;Z1|Y ) + I(X;Z2|Y )]︸ ︷︷ ︸
Conditional Compression

− [I(Y ;Z1) + I(Y ;Z2)]︸ ︷︷ ︸
Relevancy

+δcr I(Z1;Z2|Y )︸ ︷︷ ︸
Conditional Redundancy

= CEBβceb
(Z1) + CEBβceb

(Z2) + δcrI(Z1;Z2|Y ),

(3.3)

with δcr > 0 and βceb > 0, where we recover two conditional entropy bottleneck (CEB)
[Fis20] components, CEBβceb

(Zi) =
1

βceb
I(X;Zi|Y )− I(Y ;Zi).

Analysis. Like previously in Equation (3.2), the relevancy terms force features to be
informative about the task Y . The difference lies in the conditioning in the bottleneck con-
straints, only minimizing information irrelevant to Y . More specifically, the conditional
compression first removes in Zi information from X not relevant to Y . Then, the condi-
tional redundancy (CR) forces the members to have independent features conditionally
upon the class. It encourages diversity without affecting members’ individual precision as
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it protects in Zi information related to the target label Y . The key intuition explaining
why this CR term is important is:

Information from X irrelevant to predict Y should certainly not be in Z1 or Z2, but it is
even worse if they are in Z1 and Z2 simultaneously as it would cause shared errors.

One could argue that reducing I(X,Zi|Y ) indirectly controls I(Z1, Z2|Y ), as by chain rule
we have I(Z1;Z2|Y ) ≤ I(X;Zi|Y ). Yet we will empirically observe that it is more efficient
to directly target this intersection region through the CR term. In a final word, DICE is to
IBR in ensembling as CEB [Fis+20] is to IB [Ale+17] for a single network.

3.2.2 DICE implementation

We now provide an empirical strategy to approximate the two CEB terms and the CR
term in the DICE objective from Equation (3.3).

3.2.2.1 Variational approximation of conditional entropy bottleneck

To approximate the independent CEB terms for i ∈ {1, 2}, we exactly follow [Fis20],
as further detailed in Appendix C.2.2. Specifically, we consider Markov assumptions in
Zi ← X ↔ Y and the training dataset DS = {xn, yn}nS

n=1 of nS i.i.d. points. Then [Fis20]
showed that CEBβceb

(Zi) is variationally upper bounded by:

VCEBβceb
({ei, bi, di}) =

1

nS

nS∑

n=1

1

βceb
DKL (ei (·|xn) ∥bi (·|yn))− Ez∼ei(·|xn) [log di (yn|z)] .

(3.4)
This loss is applied separately on each member θi = {ei, di, bi} made of an encoder,
a classifier and a backward encoder. Specifically, the feature z follows the distribution
ei(·|x) generated by the encoder, di(y|z) is a variational approximation of the true label
distribution p(y|z) by the classifier, and bi(·|y) is a variational approximation of the feature
distribution for z (p(·|y)) by the backward encoder (conditioned only on the label).

Practically, we parameterize all distributions with Gaussians. The encoder ei is a tradi-
tional DNN featurizer (e.g., ResNet-32) that learns distributions (means and covariances)
rather than deterministic points in the feature space. That’s why ei transforms an image
into 2 tensors; a features-mean eµi (x) and a diagonal features-covariance eσi (x) each of
size d (e.g., 64). The classifier di is a dense layer that transforms a features-sample z

(following ei (·|xn)) into logits to be aligned with the target y through conditional cross-
entropy. z is obtained via reparameterization trick: z = ei(x, ϵ) = eµi (x) + ϵeσi (x) with
ϵ ∼ N(0, 1). Finally, the backward encoder bi is implemented as an embedding layer of
size (K, d) mapping the K classes to class-features-means bµi (z|y) of size d, as we set the
class-features-covariance to 1. The Gaussian parametrization also enables the exact com-
putation of the DKL (see Appendix C.2.1), that forces (i) features-mean eµi (x) to converge
to the class-features-mean bµi (z|y) and (ii) the predicted features-covariance eσi (x) to be
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close to 1. The advantage of VCEB versus VIB [Ale+17] (detailed in Appendix C.2.2) is the
class conditional bµi (z|y) versus non-conditional bµi (z), protecting class information.

3.2.2.2 Adversarial estimation of conditional redundancy

Theoretical problem. We now focus on estimating I(Z1;Z2|Y ), with no such Markov
properties. Despite being a pivotal measure, mutual information (MI) estimation histori-
cally relied on nearest neighbors [Sin+03; Kra+04; Gao+18] or density kernels [Kan+15]
that scale badly in high dimensions. We benefit from recent advances in neural estimation
of MI [Bel+18], built on optimizing [Don+75] dual representations of the KL divergence.
[Muk+20] extended this formulation for conditional MI estimation.

CR = I(Z1;Z2|Y ) = DKL(P (Z1, Z2, Y )∥P (Z1, Y )p(Z2|Y ))

= sup
f

Ex∼p(z1,z2,y)[f(x)]− log
(
Ex∼p(z1,y)p(z2|y)[exp(f(x))]

)

= Ex∼p(z1,z2,y)[f
∗(x)]− log

(
Ex∼p(z1,y)p(z2|y)[exp(f

∗(x))]
)
,

where f∗ computes the pointwise likelihood ratio, i.e., f∗(z1, z2, y) =
p(z1,z2,y)

p(z1,y)p(z2|y) .

Empirical neural estimation. We estimate CR (i) using the empirical data distribution
and (ii) replacing f∗ = w∗

1−w∗ by the output of a discriminator w, trained to imitate the
optimal w∗. Let BJ be a batch sampled from the observed joint distribution p(z1, z2, y) =

p(e1(z|x), e2(z|x), y); we select the features extracted by the two members from one input.
Let BP be sampled from the product distribution p(z1, y)p(z2|y) = p(e1(z|x), y)p(z2|y); we
select the features extracted by the two members from two different inputs that share the
same class. We train a multi-layer network w on the binary task of distinguishing these
two distributions with the standard cross-entropy loss:

Lce(w) = −
1

|BJ |+ |BP |


 ∑

(z1,z2,y)∈BJ

logw(z1, z2, y) +
∑

(z1,z′2,y)∈BP

log(1− w(z1, z
′
2, y))


 .

(3.5)
If w is calibrated, a consistent [Muk+20] estimate of CR, with f = w

1−w , is:

ÎCR
DV =

1

|BJ |
∑

(z1,z2,y)∈BJ

log f(z1, z2, y)︸ ︷︷ ︸
Diversity

− log


 1

|BP |
∑

(z1,z′2,y)∈BP

f(z1, z
′
2, y)︸ ︷︷ ︸

Fake correlations


 . (3.6)

Intuition. By training our members to minimize ÎCR
DV , we force triples from the joint

distribution to be indistinguishable from triples from the product distribution. Let’s
imagine that two features are conditionally correlated, some irrelevant information is
shared between features only when they are from the same input and not from two
inputs (from the same class). This correlation can be informative about a detail in the
background, an unexpected shape in the image, that is rarely found in other samples from
the same class. In that case, the product and joint distributions are easily distinguishable
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Figure 3.3. – Learning strategy overview. Blue arrows represent training criteria: (i) classification
with conditional entropy bottleneck applied separately on each member, and (ii) adversarial train-
ing to delete irrelevant redundant information between members and increase diversity. X and
X ′ belong to the same Y for conditional redundancy minimization.

by the discriminator. The first adversarial component will force the extracted features
to reduce the correlation, and ideally one of the two features loses this information: it
reduces redundancy and increases diversity. The impact of the second term is more
complex; it may create fake correlations between features from different inputs. As we
are not interested in a precise estimation of the CR, we get rid of this second term that,
empirically, did not increase diversity. We end up with the following empirical estimation
of CR.

L̂CR
DV (e1, e2) =

1

|BJ |
∑

(z1,z2,y)∈BJ∼p(e1(z|x),e2(z|x),y)

log f(z1, z2, y). (3.7)

Summary. First, we train each member for classification with VCEB from Equation (3.4),
as shown in Step 1 from Figure 3.3. Second, following Step 2 from Figure 3.3, the dis-
criminator, conditioned on the class Y , learns to distinguish features sampled from one
image versus features sampled from two images belonging to the same Y . Simultaneously,
both members adversarially [Goo+14] delete irrelevant shared information to reduce CR
estimation from Equation (3.7) with differentiable signals. The full DICE loss is finally:

LDICE(θ1, θ2) = VCEBβceb
(θ1) + VCEBβceb

(θ2) + δcrL̂CR
DV (e1, e2). (3.8)

3.3 Experiments

In this experimental section, we show that DICE improves accuracy by increasing
diversity. In the published paper [Ram+21a] we provide more experiments for calibration,
uncertainty estimation, out-of-distribution detection and co-distillation.
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3.3.1 Baselines and concurrent works.

The strategies motivated by IB principles involve two main components:

• compression; the encoder can be deterministic, or variationally compressed non-
conditionally (VIB) or conditionally (VCEB),

• redundancy; we can have no regularization, a non-conditional redundancy (R) or a
conditional redundancy (CR) component.

To ablate the importance of each component, we compare the following approaches.

1. Ind. DE [Lak+17] refers to the independent deterministic deep ensembling without
interactions between members. Other approaches below follow IB principles and
thus their members have probabilistic encoders.

2. IB [Ale+17] from Equation (3.1) compresses with VIB.

3. CEB [Fis20] compresses with VCEB.

4. IBR follows Equation (3.2) and optimizes:

LIBR(θ1, θ2) = VIBβib
(θ1) + VIBβib

(θ2) + δrL̂RDV (e1, e2), (3.9)

where: L̂RDV (e1, e2) =
1

|BJ |
∑

(z1,z2)∈BJ

log f(z1, z2) is simply the approximation of the

non-conditional redundancy R (same as Equation (3.7) but without the label y).

5. CEBR benefits from VCEB with approximation of non-conditional redundancy R.

LCEBR(θ1, θ2) = VCEBβceb
(θ1) + VCEBβceb

(θ2) + δrL̂RDV (e1, e2). (3.10)

6. DICE combines VCEB with approximation of conditional redundancy CR.

Regarding the concurrent works, we consider two co-distillation strategies (ONE
[Lan+18] and OKDDip [Che+20]), discussed in Remark 2.5. We also consider the best di-
versity regularization in predictions, ADP [Pan+19], decorrelating only the non-maximal
predictions. Regarding the other works that enforce diversity in features, we found that
increasing (L1, L2, − cos) distances [Kim+18] between features fail: we speculate this is
because they are not invariant to variables’s symmetry. The work most similar to ours is
[Sin+20b], proposing a diversity-inducing adversarial loss highly similar to our IBR.

3.3.2 Results on CIFAR

Table 3.1 reports the classification accuracy averaged over 3 runs for CIFAR-100 [Kri+09],
while Table 3.2 focuses on CIFAR-10. {3,4,5}-{branch,net} refers to the training of {3,4,5}
members {with,without} low-level weights sharing. We detail our implementation in the
paper. We took most hyperparameter values from [Che+20]: those for adversarial training
and information bottleneck were fine-tuned on a validation dataset made of 5% of the
training dataset. Bold highlights best score.
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Table 3.1. – CIFAR-100 ensemble classification accuracy (Top-1, %).

Name
Components ResNet-32 ResNet-110 WRN-28-2
Div. IB 3-branch 4-branch 5-branch 4-net 3-branch 4-branch 3-branch 4-branch 3-net

Ind. DE [Lak+17] 76.28±0.12 76.78± 0.19 77.24± 0.25 77.38± 0.12 80.54± 0.09 80.89± 0.31 78.83± 0.12 79.10± 0.08 80.01± 0.15

ONE [Lan+18] 75.17±0.35 75.13±0.25 75.25±0.22 76.25±0.32 78.97±0.24 79.86±0.25 78.38±0.45 78.47±0.32 77.53±0.36

OKDDip [Che+20] 75.37±0.32 76.85±0.25 76.95±0.18 77.27±0.31 79.07±0.27 80.46±0.35 79.01±0.19 79.32±0.17 80.02±0.14

ADP [Pan+19] Pred. 76.37±0.11 77.21±0.21 77.67±0.25 77.51±0.25 80.73±0.38 81.40± 0.27 79.21±0.19 79.71±0.18 80.01±0.17

IB [Ale+17] VIB 76.01±0.12 76.93± 0.24 77.22±0.19 77.72±0.12 80.43±0.34 81.12±0.19 79.19±0.35 79.15±0.12 80.15±0.13

CEB [Fis20] VCEB 76.36±0.06 76.98± 0.18 77.35±0.14 77.64± 0.15 81.08± 0.12 81.17± 0.16 78.92±0.08 79.20±0.13 80.38±0.18

IBR Equation (3.9) R VIB 76.68±0.13 77.25± 0.13 77.77±0.21 77.84±0.12 81.34±0.21 81.38± 0.08 79.33±0.15 79.90±0.10 80.22±0.10

CEBR Equation (3.10) R VCEB 76.72±0.08 77.30± 0.12 77.81± 0.10 77.82± 0.11 81.52±0.11 81.55±0.33 79.25±0.15 79.98±0.07 80.35±0.15

DICE Equation (3.8) CR VCEB 76.89± 0.09 77.51± 0.17 78.08± 0.18 77.92± 0.08 81.67±0.14 81.93± 0.13 79.59±0.13 80.05±0.11 80.55± 0.12

DICE surpasses concurrent approaches for ResNet and Wide-ResNet architectures.
On CIFAR-100, DICE outperforms DE by {+0.60,+0.73,+0.84} for {3,4,5}-branches
ResNet-32. We also bring significant and systematic improvements to ADP [Pan+19]: e.g.,
{+0.52,+0.30,+0.41} for {3,4,5}-branches ResNet-32, {+0.94,+0.53} for {3,4}-branches
ResNet-110 and finally +0.34 for 3-networks WRN-28-2. Moreover, in Figure 3.4, an en-
semble of 5 networks trained with DICE matches an ensemble of 7 networks trained
independently; these results confirm that diversity approaches better leverage size. Fi-
nally, we observe that our gains are more important in the branch setup. This makes
the TreeNet [Lee+15; Sze+15] architecture attractive, as it reduces memory cost at only a
slight cost in diversity, which can be compensated with our DICE regularization.

Table 3.2. – CIFAR-10 ensemble classification accuracy (Top-1, %).
Archi Structure Ind. DE ONE OKDDip ADP IB CEB IBR CEBR DICE

ResNet-32 4-branch 94.75±0.08 94.41±0.05 94.86± 0.08 94.92± 0.04 94.76± 0.12 94.93± 0.11 94.91± 0.14 94.94± 0.12 95.01± 0.09

ResNet-110 3-branch 95.62±0.06 95.25±0.08 95.21±0.09 95.43± 0.12 94.54± 0.07 94.65± 0.05 95.68± 0.05 95.67± 0.06 95.74± 0.08

Figure 3.4. – DICE better leverages ensemble size on CIFAR-100 for ResNet-32. Without weights
sharing, 5 networks trained with DICE match 7 networks trained independently. With low-level
weights sharing, 4 branches trained with DICE match 7 traditional branches.
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3.3.3 Individual accuracy-diversity trade-off

We now analyze how the two components of DICE modify the accuracy-diversity trade-
off, with a 4-branches ResNet-32 on CIFAR-100. We measure diversity with the ratio-error
[Aks03], and observe similar results for other diversity measures in the paper [Ram+21a].
In Figure 3.5, CEB has slightly higher diversity than independent trainings: diversity
benefits from compression. ADP reaches higher diversity but sacrifices individual accura-
cies. On the contrary, co-distillation OKDDip [Che+20] sacrifices diversity for individual
accuracies. DICE curve is above all others, and notably δcr = 0.2 induces an optimal trade-
off between ensemble diversity and individual accuracies on validation. CEBR reaches same
diversity with lower individual accuracies, because some information relevant about Y
was removed during non-conditional redundancy regularization.

Figure 3.6 shows the training dynamics for different values of δcr in DICE; in particular,
δcr = 0.0 corresponds to CEB. Starting from random initializations, diversity always
begins small. Then larger values of δcr minimizes the estimated CR in features and
increases diversity in predictions compared to CEB. Specifically a very high value (δcr =
0.6) creates too much diversity as it drastically reduces individual performances. On the
contrary, a negative value (δcr = −0.025) can decrease diversity.

Figure 3.5. – Ensemble diversity/individual ac-
curacy trade-off for different strategies. DICE (r.
CEBR) is learned with different δcr (r. δr).

Figure 3.6. – Impact of the diversity coefficient
δcr in DICE on the training dynamics on valida-
tion: CR is negatively correlated with diversity.

3.3.4 Results on DomainBed

Previous experiments were conducted on CIFAR with a ID test dataset: in Table 3.3,
we now provide OOD results on two datasets from DomainBed [Gul+21] where diversity
shifts dominate. On PACS, the training domains are “Cartoon”, “Photo” and “Sketch”;
the OOD accuracy is reported on PACS’s “Art” domain. On OfficeHome, the training
domains are “Clipart”, “Product” and “Real”; the OOD accuracy is reported on Office-
Home’s “Art” domain. All methods use 20 runs with hyperparameters sampled from
the mild range in Table 2.1, the ensembling methods use M = 2 ResNet-50, and we con-
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Table 3.3. – OOD accuracy (%, ↑) on DomainBed. “Art” is the OOD domain for both datasets.

Algorithm PACS OfficeHome

ERM 87.6 ± 0.4 62.9 ± 1.3
Ind. DE 88.2 ± 0.2 65.3 ± 0.6
DICE 88.4 ± 0.2 65.7 ± 0.5

sider DICE with δcr = 0.2. We consistently observe that ensembling and DICE improve
performances on these datasets. The subsequent chapters will enrich our analysis on
DomainBed [Gul+21], which actually appeared after DICE [Ram+21a] was published.

3.4 Conclusion

In this chapter, motivated by arguments from information theory, we derive a novel
adversarial training strategy for ensemble. We tackle the trade-off between individual
accuracies and ensemble diversity by deleting irrelevant information across members.
We improve the accuracy on CIFAR-10 and CIFAR-100 compared to the DE baseline. We
show that DICE can be combined with efficient ensembling strategies such as TreeNets
[Lee+15], where members share low-level weights.

Perspectives. Despite its merits, this initial approach has two critical limitations. First,
DICE requires to learn simultaneously all models, inhibiting parallelization during train-
ing. Moreover, subsequent research [Wor+23; Abe+23] revealed the limitations of diversity
regularizations when applied to larger datasets such as ImageNet. Given these limitations,
we will explore implicit strategies to bolster diversity in the rest of this thesis.
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D I V E R S E W E I G H T AV E R A G I N G F O R
O U T- O F - D I S T R I B U T I O N G E N E R A L I Z AT I O N

4.1 Introduction

The framework of foundation models [Bom+21] is fueling a spectacular adoption of
ML solutions for real-world applications: these models are pre-trained on large-and-
diverse data [Fan+22; Ngu+22; Abn+22] and easy [Oqu+14] to adapt to downstream
tasks. Though this transfer learning helps, models still struggle to generalize on out-
of-distribution (OOD) samples [Hen+19a; Tao+20; Gul+21; Hen+21]. Increased OOD
generalization would enable the responsible use of ML in real-world applications where
robustness are critical [Tay+16; Zec+18; DeG+21], as previously described in Section 1.3.
Thus, how to best fine-tune foundation models for OOD generalization is a key topic
of research.

On the reference DomainBed benchmark [Gul+21] evaluating different fine-tuning
strategies for OOD generalization, the standard empirical risk minimization (ERM) was
recently outperformed by moving average (MA) [Cha+21a; Arp+21]: MA simply weight
averages (WA) the various checkpoints (a.k.a. snapshots) collected along a training trajec-
tory [Izm+18]. [Cha+21a] argue that this WA succeeds because it finds solutions in flatter
regions of the loss landscape.

In this chapter, we challenge this flatness-based analysis, and show its limitations. We
then propose a new explanation for the success of WA in OOD based on its similarities
with functional ensembling ENS: we show that averaging the models or the weights
behave similarly as long as the weights remain sufficiently close. Based on this similarly
and the bias-variance-covariance Equation (BVC) for ENS, we obtain a bias-variance-
covariance-locality decomposition of WA’s expected error. It contains four terms:

1. first the bias increasing under correlation shift [Ye+22], see Section 2.2.2,

2. second, the variance increasing under diversity shift [Ye+22], see Section 2.2.1,

3. third, the covariance decreasing when models are diverse, see Section 2.3.3,

4. finally, a new locality condition on the weights, enforcing averageability.

This explains WA’s success (i) for diversity shift (where variance dominates), (ii) as long
as the models are functionally diverse (to reduce variance) (iii) yet close in the weight
space (to ensure averageability).

Based on this analysis, we aim at enhancing diversity while preserving weight aver-
ageability. We thus propose Diverse Weight Averaging (DiWA) averaging weights ob-
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tained from independent fine-tunings, all starting from a shared pre-trained initialization,
yet with different hyperparameters and data orders. The motivation is that those mod-
els are more diverse than those obtained along a single run [For+19a; Gon+22]. More-
over, because the shared initialization is pre-trained, the weights of the models remain
close enough to be averaged. This follows the linear mode connectivity (LMC) [Fra+20;
Nag+19], as previously explored for fine-tuning in [Ney+20].

• We reveal (theoretical and empirical) limitations from existing flatness-based analy-
sis of weight averaging (WA) (Section 4.2.2).

• We propose a new analysis of WA based on its similarity with ensembling, lead-
ing to a new bias-variance-covariance-locality decomposition of its expected error
(Section 4.3).

• We propose DiWA to enhance the diversity across averaged models by decorrelating
their training procedures: in practice, these models are obtained from independent
runs with different hyperparameters (Section 4.4).

• Experimentally, DiWA improves performances on the competitive DomainBed
benchmark, without any inference overhead (Section 4.6).

This chapter has led to the publication of Alexandre Ramé, Matthieu Kirchmeyer,
Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari, and Matthieu Cord. “Diverse
Weight Averaging for Out-of-Distribution Generalization”. In: NeurIPS. 2022.

4.2 Context

4.2.1 Fine-tuning for OOD generalization

Problem and notations. We start by describing our setup. We train a deep neural
network (DNN) f(·, θ) : X → Y with weights θ, that should maximize the test accu-
racy accT (θ), or equivalently minimize the test generalization error ET (θ). To this end,
f(·, θ) should approximate the labelling function fT on XT . However, this is complex
in OOD because we only have data from domain S in training, related yet different
from T . The differences between S and T are due to distribution shifts (i.e., the fact that
pS(X,Y ) ̸= pT (X,Y )) which are decomposed per [Ye+22] into (i) diversity shift, when
marginal distributions differ (i.e., pS(X) ̸= pT (X)), and (ii) correlation shift, when posterior
distributions differ (i.e., pS(Y |X) ̸= pT (Y |X) and fS ̸= fT ).

Vanilla fine-tuning. For OOD generalization, transfer learning [Oqu+14; Kir+22] from
a foundation model [Bom+21] and then supervised fine-tuning with ERM [Vap92] is the
standard strategy [Gul+21]. Specifically, from a featurizer pre-trained on a large dataset
such as ImageNet [Rus+15], users usually launch multiple fine-tunings on the target task
with different hyperparameters, and then select the best one based on some validation
metric [Gul+21].
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Weight averaging over epochs. Recently, WA strategies came to the fore-
ground [Sze+16; Izm+18; Dra+18], as previously described in Section 2.3.4. While fine-
tuning a pre-trained model, they saved and averaged checkpoints every few epochs to
build the final model. Due to the non-linear nature of DNNs, the efficacy of WA was a
surprising observation, that [Fra+20] latter called the linear mode connectivity (LMC).

Observation 4.1 (LMC with different epochs [Izm+18]). Two weights θ1 and θ2, obtained at
two different epochs of the same fine-tuning, satisfy the LMC: for all λ ∈ [0, 1],

accT ((1− λ) · θ1 + λ · θ2) ≳ (1− λ) · accT (θ1) + λ · accT (θ2). (4.1)

The LMC holds if the accuracy of the interpolated weights is above the interpolated
accuracy. Consistently with Observation 4.1, recent works [Arp+21; Cha+21a; Wor+22b;
Kad22] weight average checkpoints along training to improve accuracies. In particular,
[Arp+21] showed that the simple moving average (MA) strategy, which samples uniformly
along training, is sota on DomainBed [Gul+21].

4.2.2 Flatness analysis of WA

4.2.2.1 Flatness generalization bound

Despite its empirical success, WA strategies lack theoretical foundations. Previous anal-
ysis [Cha+21a] argues that WA succeeds because it flattens the loss landscape. Specifically,
the “flatness” Theorem 1 in [Cha+21a] upper bounds target generalization error by a sum
of three terms.

1. The first and most important term involves the solution’s ID flatness, and is usually
estimated by the trace of the Hessian [Din+17b; Pet+21; Yao+20], i.e., the sum of its
eigenvalues.

2. The second term is a domain divergence between the source and target marginal
distributions, which grows under distribution shifts.

3. The last (and not analyzed) term involves the VC dimension of the networks.

4.2.2.2 Limitations of the flatness analysis

In Figure 4.1, we analyze flatness via the Hessian trace, computed with [Yao+20], on the
OfficeHome dataset [Ven+17], using “Art” as the OOD test domain. We confirm that WA
flattens the loss landscape; yet this does not mean that WA succeeds because of it. Indeed,
several theoretical inconsistencies and unanswered empirical observations remain.

1. Flatness and domain shifts. First, the flatness-based analysis is not specific to OOD.
Indeed, the flatness and domain divergence in the upper bound of [Cha+21a] from
Section 4.2.2.1 are not interacting; more flatness does not reduce domain divergence,
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Figure 4.1. – Train Hessian
trace (↓)

Figure 4.2. – Test OOD accu-
racy (↑).

Figure 4.3. – Test diversity in
ratio-error [Aks03] (↑).

and the OOD error is actually uncontrolled. In other words, additional flatness
may improve generalization in general, but this bound tells us nothing about an
hypothetic specific impact for OOD.

2. WA vs. SAM. Second, the upper bound does not clarify why MA outperforms
flatness-based methods such as sharpness-aware minimization (SAM) [For+21],
which is an optimization strategy that directly optimizes flatness along training.
In Figure 4.1, we observe that SAM actualy finds flatter minimas than MA [Arp+21].
Yet, this is not reflected in OOD accuracies in Figure 4.2 where MA outperforms
SAM. These results have been confirmed empirically in [Cha+21a]. In conclusion,
flatness is not sufficient to explain why WA works so well in OOD, because SAM
has better flatness but worse OOD results.

3. Combining WA and SAM. We investigate another empirical inconsistency when
combining MA and SAM. As argued in [Kad+22], we confirm in Figure 4.1 that
MA + SAM usually leads to flatter minimas than MA and WA alone. Yet, MA
does not benefit from SAM in Figure 4.2. Moreover, [Cha+21a] also showed in their
Table 4 that SWAD + ERM outperforms SWAD + SAM. This is not explained by
the upper bound from [Cha+21a], which argues that more flatness should improve
OOD results.

4.3 Bias-variance-covariance-locality analysis

To replace this flatness-based analysis, we propose a new one based on the similarity
between WA and functional ensembling, as shown in Section 4.3.1. We then decompose
WA’s expected error in Section 4.3.2. This analysis suggests three (conflicting) success
criterion for WA, as the averaged models should be:

1. individually accurate (to reduce the bias term),

2. diverse functionally (to reduce the covariance term),

3. close in the weight space (or at least satisfying the linear mode connectivity (LMC),
to reduce the locality term).
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4.3.1 WA approximates ensembling

Notations. We recall the notations previously introduced in Chapter 2. When needed,
we explicitly write θ(lS) to refer to the weights obtained after stochastic minimization on
DS w.r.t. θ under lS = {DS , c} a learning procedure, where:

• the training dataset DS from S is composed of nS i.i.d. samples from pS(X,Y ),

• the configuration c contains all other sources of randomness in the learning.

We study the benefits of averaging M weights {θi}Mi=1 = {θ(l(i)S )}Mi=1 obtained from the
M learning procedures LM

S = {l(i)S }Mi=1 (potentially correlated yet) identically distributed
(i.d.). Their WA is fWA = f(·, θWA) where θWA = θWA(L

M
S ) = 1

M

∑M
i=1 θi.

Ensembling. To decompose WA’s error, we leverage its similarity with functional en-
sembling fENS = 1

M

∑M
i=1 f(·, θi). Specifically, Lemma 4.1 establishes that fWA is a first-

order approximation of fENS when {θi}Mi=1 are close in the weight space. The proof is in
Appendix C.3.

Lemma 4.1 (WA and ENS. Adapted from [Izm+18; Wor+22a].). Given {θi}Mi=1 with learning
procedures LM

S = {l(i)S }Mi=1. Denoting ∆LM
S

= maxMi=1 ∥θi − θWA∥2, ∀(x, y) ∈ X × Y :

fWA(x) = fENS(x) +O(∆2
LM
S
) and ℓ (fWA(x), y) = ℓ (fENS(x), y) +O(∆2

LM
S
). (4.2)

4.3.2 Bias-variance-covariance-locality decomposition

This similarity is useful since Equation (BV) was extended into a bias-variance-
covariance decomposition for ENS in Equation (BVC) following [Ued+96; Bro+05a]. Thus,
by inserting Equation (BVC) into Equation (4.2), we obtain the following Proposition 4.1.

Proposition 4.1 (Bias-variance-covariance-locality decomposition of WA’s error.). With
f̄S (x) = ElS [f (x, θ (lS))], under i.d. LM

S = {l(i)S }Mi=1, the expected generalization error on
domain T of WA over the joint distribution of LM

S , is:

ELM
S
ET (θWA(L

M
S )) = EpT [bias(x, y)

2 +
var(x)

M
+

M − 1

M
cov(x)] +O(∆̄2), (BVCL)

where:

bias(x, y) = y − f̄S (x) ,

var(x) = ElS

[(
f(x, θ(lS))− f̄S (x)

)2]
,

cov(x) = ElS ,l
′
S
(f(x, θ(lS))− f̄S(x))(f(x, θ(l

′
S))− f̄S(x)),

∆̄2 = ELM
S
∆2

LM
S

where ∆LM
S

=
M

max
i=1
∥θi − θWA∥2 .

The locality term ∆̄2 is the expected squared maximum distance between weights and their average.
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4.3.3 Locality, diversity and linear mode connectivity

Equation (BVCL) involves four terms. The three first terms are those from functional
ensembling, previously analyzed in Section 2.3.2; namely the bias (the same as each of its
i.d. members), a variance divided by M and a covariance term (analyzed in Section 2.3.3,
measuring diversity).

In contrast, the last locality term O(∆̄2) is specific to weight averaging; it ensures that
WA approximates ENS by constraining the weights to remain close. Overall, locality
and diversity are two antagonistic terms: to reduce WA’s error, we thus seek a good
trade-off between locality and diversity. In practice, we consider that the main goal of
this locality term is to ensure that the weights are averageable despite the non-linearities
in the DNN such that WA’s error does not explode. This is why in Section 4.4, we
empirically relax this locality constraint and simply require that the weights satisfy the
linear mode connectivity (LMC) [Fra+20]. We empirically verify later in Figure 4.5 that
the approximation fWA ≈ fENS remains valid even in this case.

Conclusion. We have showed in Section 2.2 that bias dominates under correlation shift
and variance dominates under diversity shift. Therefore, in a similar fashion to functional
ensembling, our analysis suggests that WA would be effective against diversity shift when M

is large and when its members are diverse but linearly mode connected.

4.3.4 Superiority of our analysis

We summarize why analyzing WA through the prism of functional ensembling and
variance reduction fixes failures from previous flatness-based analysis [Cha+21a].

1. First, our analysis explains why WA performs well under diversity shift, and less
in-distribution (as observed in previous works [Arp+21; Wor+22a]) or not under
correlation shift (as validated in Section 4.6.3.4). This is because variance is mostly an
issue under diversity shift, and that variance reduction is useless under correlation
shift where bias dominates. This was not predicted by the flatness analysis. We also
explicitly explain why increasing the number of weights M helps.

2. Our analysis explains why WA and SAM are not complementary in OOD, as visible
in Figure 4.2, in contradiction with what was argued in [Cha+21a]. Indeed, we
observe in Figure 4.3 that the diversity across two checkpoints collected along a
SAM trajectory is much lower than along a standard SGD trajectory. Therefore, the
gain in individual accuracies of models trained with SAM cannot compensate the
decrease in diversity.
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foundation model
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fine-tuning(s)
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fine-tuning
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WiSE fine-tuning DiWA

Figure 4.4. – The different fine-tuning strategies discussed in this chapter: vanilla fine-
tuning [Oqu+14], moving average (MA) [Izm+18] and variants [Wor+22b], and our novel
DiWA [Ram+22b]. They all start from a pre-trained foundation model, before fine-tuning on
the target task (thick solid arrows ). The fine-tuned weights are used as is, or are averaged
(dashed arrows ) into a final model.

4.4 DiWA

4.4.1 Motivation: weight averaging from different runs for more diversity

Limitations of single-run WA. Our analysis suggests that WA performances can be
improved by increasing diversity across the averaged models. Yet, previous WA methods
[Cha+21a; Arp+21] only average weights obtained along a single run. This corresponds
to highly correlated procedures sharing the same initialization, hyperparameters, batch
orders, data augmentations and noise, that only differ by the number of training steps.
The models are similar, which does not leverage the full potential of WA.

DiWA. Our DiWA pushes the envelope of WA techniques, and reduce the OOD ex-
pected error in Equation (BVCL) by decorrelating the learning procedures {l(i)S }Mi=1. The
weights are obtained from M ≫ 1 different runs, with different hyperparameters (learn-
ing rate, weight decay and dropout probability), batch orders, data augmentations (e.g.,
random crops, horizontal flipping, color jitter, grayscaling), stochastic noise and number
of training steps. Thus, the models averaged in DiWA collected from those multiple runs
would be more diverse than the snapshots collected along a single training run. However,
this gain in diversity may break the locality requirement from Section 4.3.3; below, we
detail the empirical conditions under which DiWA succeeds.
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4.4.2 On the importance of pre-training for weight averaging

The success of DiWA relies on the following observation from [Ney+20]: “there is no
performance barrier between two instances of models trained from pre-trained weights”.
Two independent fine-tunings from a shared pre-trained model satisfy the LMC, and thus
can be connected along a linear path where error remains low [Nag+19; Fra+20]. Formally:

Observation 4.2 (LMC with different runs [Ney+20]). The LMC holds between θ1 and θ2
fine-tuned on the target task initialized from a shared pre-trained model.

Shared pre-trained initialization. This Observation 4.2 means that DiWA would work
if the models from different runs are initialized from a shared pre-trained model. In
our experiments, our featurizer will be pre-trained on ImageNet [Kri+12], following the
standard setup from DomainBed. Regarding the classifier initialization, we test two meth-
ods. The first is the random initialization, which may distort the features [Kum+22]. The
second is linear probing (LP) [Kum+22]: it first learns the classifier (while freezing the
featurizer) to serve as a shared initialization; then, LP fine-tunes the featurizer and the
classifier together in the M subsequent runs. This two-step procedure would reduce the
locality term, as [Kum+22] showed that fine-tuned weights then tend to remain closer.

4.4.3 Mild hyperparameter search

In addition to the shared pre-trained initialization, we add a constraint on the hyperpa-
rameters. This is based on the observation from Figure 4.10 that extreme hyperparameter
ranges may to lead poor performances after WA; we speculate that weights obtained from
extremely different hyperparameters (in particular different learning rates) may belong
to different regions of the loss landscape. In our experiments, we thus use the mild hy-
perparameter ranges defined in Table 2.1. This mild hyperparameter search empirically
guarantees high diversity and averageability.

4.4.4 Weight selection

The last stage of our approach is to choose which weights to average among those avail-
able. Our standard uniformly averages all weights; it is practical but may underperform
when some runs have failed. A possible refinement proposed in [Wor+22a] is a greedy
selection, restricting the number of selected weights: weights are ranked in decreasing
order of ID validation accuracy and sequentially added only if they improve DiWA’s ID
validation accuracy.
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4.5 Related work.

The LMC is at the heart of DiWA but also of other recent works [Wor+22b; Mat+22;
Wor+22a] that average weights with fewer constraints [Wor+22b; Mat+22; Wor+22a;
Gup+20; Cho+22b; Wor+21] than traditional moving average [Izm+18]. To increase diver-
sity across averaged models, [Mad+19] used a high learning rate; [Ben+21] encouraged
the weights to encompass more volume; [Wor+21] minimized cosine similarity between
weights; [Izm+19] used a tempered posterior. In particular, the concurrent “model soups”
introduced by Wortsman et al. [Wor+22a] two months before DiWA follows a similar strat-
egy: yet, the theoretical analysis and the goals of these two works are different. Regarding
the motivation, DiWA aims at combining diverse weights, and proposes a general frame-
work to average weights obtained in various ways. In contrast, [Wor+22a] challenges the
standard model selection after a grid search. Regarding the task, [Wor+22a] and DiWA
complement each other: while [Wor+22a] demonstrate robustness on several ImageNet
variants, we improve the sota on the multi-domain DomainBed benchmark against other
established OOD methods (Section 4.6.1). Thus, DiWA and [Wor+22a] are theoretically
complementary with different motivations and applied successfully for different tasks.

4.6 Experiments

4.6.1 Experimental setup

Datasets. We first show DiWA improves performance on DomainBed [Gul+21], pre-
viously described in Section 2.1.3, including 5 multi-domain real-world datasets: PACS
[Li+17], VLCS [Fan+13], OfficeHome [Ven+17], TerraIncognita [Bee+18] and DomainNet
[Pen+19]. Criticially, [Ye+22] showed that diversity shift dominates in these datasets. Each
domain is successively considered as the target T while other domains are merged into
the source S. The validation dataset is sampled from S.

Baselines. ERM is the standard empirical risk minimization. CORAL [Sun+16] is the
best approach based on domain invariance. SWAD (Stochastic Weight Averaging Densely)
[Cha+21a] and MA [Arp+21] average weights along one training trajectory but differ in
their weight selection strategy. Specifically, SWAD [Cha+21a] uses a “loss-aware” strategy
involving three additional hyperparameters (a patient parameter, an overfitting patient
parameter and a tolerance rate); in contrast, MA [Arp+21] is easy to implement as it
simply combines all checkpoints uniformly starting from batch 100 until the end of
training. We also report the scores obtained in [Arp+21] for the costly deep ensembling
(DE∗) [Lak+17] of M = 6 models with different classifier initializations, where the symbol
“∗” marks the large inference overhead.
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Our runs. ERM and DiWA share the same training protocol in DomainBed: yet, instead
of keeping only one run from the grid-search, DiWA averages M weights. In practice, we
sample 20 configurations from the mild hyperparameter distributions detailed in Table 2.1
and report the mean and standard deviation across 3 data splits. For each run, we select
the weights of the epoch with the highest ID validation accuracy. The ENS∗ averages
the predictions of all M = 20 models (with shared initialization). DiWA-greedy selects
1 ≤M ≤ 20 weights while DiWA-uniform averages all M = 20 weights. DiWA† averages
uniformly the M = 3× 20 = 60 weights from all 3 data splits.

4.6.2 Results on DomainBed

We report our main results in Table 4.1: best results are in bold and the second best are
underlined. With a randomly initialized classifier, DiWA†-uniform is the best on PACS,
VLCS and OfficeHome: DiWA-uniform is the second best on PACS and OfficeHome.
On TerraIncognita and DomainNet, DiWA is penalized by some bad runs, filtered in
DiWA-greedy which improves results on these datasets. Classifier initialization with
LP [Kum+22] improves all methods on OfficeHome, TerraIncognita and DomainNet.
On these datasets, DiWA† increases MA by 1.3, 0.5 and 1.1 points respectively. After
averaging, DiWA† with LP reaches 68.0%, improving SWAD by 1.1 points.

Table 4.1. – Accuracies (%, ↑) on DomainBed [Gul+21] benchmark evaluating OOD generalization.
The classifiers are initialized randomly or with linear probing (LP) [Kum+22]. The symbol “∗”
indicates inference overhead in functional ensembling. The symbol “†” indicates the averaging of
all weights across 3 data splits.

Algorithm Weight selection Init PACS VLCS OfficeHome TerraInc DomainNet Avg

ERM ID val

Random

85.5 ± 0.2 77.5 ± 0.4 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
CORAl [Sun+16] ID val 86.2 ± 0.3 78.8 ± 0.6 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.6
SWAD [Cha+21a] Loss-aware 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
MA [Arp+21] Uniform 87.5 ± 0.2 78.2 ± 0.2 70.6 ± 0.1 50.3 ± 0.5 46.0 ± 0.1 66.5
DE∗ [Arp+21] Uniform: M = 6 87.6 78.5 70.8 49.2 47.7 66.8

O
ur

ru
ns

ERM ID val

Random

85.5 ± 0.5 77.6 ± 0.2 67.4 ± 0.6 48.3 ± 0.8 44.1 ± 0.1 64.6
MA [Arp+21] Uniform 87.9 ± 0.1 78.4 ± 0.1 70.3 ± 0.1 49.9 ± 0.2 46.4 ± 0.1 66.6
ENS∗ Uniform: M = 20 88.0 ± 0.1 78.7 ± 0.1 70.5 ± 0.1 51.0 ± 0.5 47.4 ± 0.2 67.1
DiWA Greedy: M ≤ 20 87.9 ± 0.2 79.2 ± 0.1 70.5 ± 0.1 50.5 ± 0.5 46.7 ± 0.1 67.0
DiWA Uniform: M = 20 88.8 ± 0.4 79.1 ± 0.2 71.0 ± 0.1 48.9 ± 0.5 46.1 ± 0.1 66.8
DiWA† Uniform†: M = 60 89.0 79.4 71.6 49.0 46.3 67.1

ERM ID val

LP

85.9 ± 0.6 78.1 ± 0.5 69.4 ± 0.2 50.4 ± 1.8 44.3 ± 0.2 65.6
MA [Arp+21] Uniform 87.8 ± 0.3 78.5 ± 0.4 71.5 ± 0.3 51.4 ± 0.6 46.6 ± 0.0 67.1
ENS∗ Uniform: M = 20 88.1 ± 0.3 78.5 ± 0.1 71.7 ± 0.1 50.8 ± 0.5 47.0 ± 0.2 67.2
DiWA Greedy: M ≤ 20 88.0 ± 0.3 78.5 ± 0.1 71.5 ± 0.2 51.6 ± 0.9 47.7 ± 0.1 67.5
DiWA Uniform: M = 20 88.7 ± 0.2 78.4 ± 0.2 72.1 ± 0.2 51.4 ± 0.6 47.4 ± 0.2 67.6
DiWA† Uniform†: M = 60 89.0 78.6 72.8 51.9 47.7 68.0

4.6.3 Empirical validation of theoretical insights

We now validate key findings about the empirical similarity between WA and ENS,
and then about the role of diversity in WA. To this end, we consider several collections of
weights {θi}Mi=1 (2 ≤M < 10) trained on the “Clipart”, “Product” and “Photo” domains
from OfficeHome [Ven+17] with a shared random initialization and mild hyperparameter
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ranges. These weights are indifferently sampled from a single run (every 50 batches) or
from different runs. They are evaluated on “Art”, the fourth domain from OfficeHome
considered as OOD.

4.6.3.1 WA vs. ENS

Figure 4.5 validates Lemma 4.1 and that weight averaging (WA) and ensembling (ENS)
perform similarly: most dots are close to the diagonal. Moreover, a larger M improves
results, motivating averaging as many weights as possible, consistently with Equa-
tion (BVCL). WA has a fixed inference time which allows it to consider larger M . In
contrast, the functional ensembling ENS of M models require M forwards at inference;
thus ENS is computationally impractical for large M .

Actually, we observe that WA slightly but consistently beats ENS, (i) in OOD (ii) when
weights share the same initialization and (iii) hyperparameters are sampled from mild
ranges. We provide a preliminary explanation to this surprising phenomenon in Sec-
tion 7.2.2. Critically, in Table 4.2, we show that this is no longer the case when we relax
the two last constraints. First, when the classifiers’ initializations vary, ENS improves
thanks to this additional diversity; in contrast, DiWA degrades because weights are no
longer averageable. Second, when the hyperparameters are sampled from extreme ranges
(defined in Table 2.1), performance drops significantly for DiWA, but much less for ENS.
This highlights a limitation of DiWA, which requires weights that are linearly mode con-
nected. In contrast, ENS are computationally expensive (and even impractical for large
M ), but can leverage additional sources of diversity, such as diverse initializations and
extreme hyperparameters.

Figure 4.5. – Each dot displays the OOD accuracy (↑) of WA vs. ENS when combining M models.

Table 4.2. – DiWA vs. ENS on domain “Art” from OfficeHome when varying initialization and
hyperparameter ranges. Best accuracy (%, ↑) on each setting is in bold.

Configuration M = 20 M = 60

Shared classifier init Mild hyperparameter ranges DiWA ENS∗ DiWA ENS∗

✓ ✓ 67.3 ± 0.2 66.1 ± 0.1 67.7 66.5
✗ ✓ 65.0 ± 0.5 67.5 ± 0.3 65.9 68.5
✓ ✗ 56.6 ± 0.9 64.3 ± 0.4 59.5 64.7
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4.6.3.2 Diversity and accuracy

We validate in Figure 4.6 that fWA benefits from diversity. Here, we measure diver-
sity with the ratio-error [Aks03], previously defined in Section 2.3.3.1. A higher aver-
age over the

(
M
2

)
pairs means that members are less likely to err on the same inputs

thus more diverse. Specifically, the gain of Acc(θWA) over the mean individual accuracy
1
M

∑M
i=1Acc (θi) increases with diversity. For example, when M = 9 weights are averaged,

the accuracy gain increases by 0.297 per unit of additional diversity in prediction.

Moreover, this phenomenon intensifies for larger M . In Figure 4.7, we indicate the
slope of the linear regressions relating diversity to accuracy gain at fixed M (between 2

and 9). We observe that the linear regression’s slope (i.e., the accuracy gain per unit of
diversity) increases with M . This confirms that diversity becomes more important for
large M , consistently with the (M − 1)/M factor in front of cov (x) in Equation (BVCL).

Figure 4.6. – Each dot displays the accuracy (↑)
gain of WA over its members vs. the prediction
diversity [Aks03] (↑) for M models.

Figure 4.7. – The slopes relating diversity (in
prediction [Aks03] or in features [Kor+19]) to
accuracy gain, increases with M .

4.6.3.3 Increasing diversity thus accuracy via different runs.

Now we investigate the difference between sampling the weights from a single run or
from different runs. Figure 4.8 first shows that diversity increases when weights come
from different runs. Second, this diversity gain is reflected on the OOD accuracies in
Figure 4.9; here, we rank by validation accuracy the 60 weights obtained (i) from 60

different runs and (ii) along 1 well-performing run. We then consider the WA of the
top M weights as M increases from 1 to 60. Both have initially the same performance
and improve with M ; yet, WA of weights from different runs gradually outperforms the
single-run WA. Finally, Figure 4.10 shows that this holds only for mild hyperparameter
ranges and with a shared initialization. Otherwise, when hyperparameter distributions
are extreme (as defined in Table 2.1) or when classifiers are not similarly initialized, DiWA
may perform worse than its members due to a violation of the locality condition. These
experiments confirm that diversity is key as long as the weights remain averageable.
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Figure 4.8. – Frequencies of
diversities [Aks03] across 2
weights obtained along a single
run or from different runs.

Figure 4.9. – WA accuracy as M
increases, when the M weights
are obtained along a single run
or from different runs.

Figure 4.10. – Each dot displays
the accuracy gain of WA over
its members vs. diversity for
2 ≤M < 10 models.

4.6.3.4 Failure under correlation shift

Our theory from Section 4.3 suggests that WA can tackle diversity shift (as previ-
ously verified) but not correlation shift; combining multiple models should be ineffi-
cient when bias dominates (see Section 2.2.2). We verify this failure on the ColoredM-
NIST [Arj+19] dataset, which is dominated by correlation shift [Pen+19]. Indeed, Colored
MNIST is a variant of the MNIST handwritten digit classification dataset [LeC+10] where
the correlation strengths between color and label vary across domains. We follow the
DomainBed [Gul+21] protocol, with the small CNN architecture specialized for MNIST
experiments, and the test-domain model selection argued in [Ye+22] (see the published
paper [Ram+22b] for similar results with the train-domain model selection).

In Table 4.3, we observe that DiWA-uniform and MA both perform poorly compared
to ERM, confirming the failure of WA strategies under correlation shift. Note that DiWA-
greedy does not degrade ERM as it selects only a few models for averaging.

Table 4.3. – Accuracy (%, ↑) on ColoredMNIST. WA does not improve performance under corre-
lation shift. Random initialization of the classifier. Test-domain model selection.

Algorithm Weight selection +90% +80% -90% Avg

ERM OOD val 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8 ± 0.2
Coral [Sun+16] OOD val 71.1 ± 0.2 73.4 ± 0.2 31.1 ± 1.6 58.6 ± 0.5
IRM [Arj+19] OOD val 72.0 ± 0.1 72.5 ± 0.3 58.5 ± 3.3 67.7 ± 1.2
Fishr [Ram+22a] OOD val 74.1 ± 0.6 73.3 ± 0.1 58.9 ± 3.7 68.8 ± 1.4

O
ur

ru
ns

ERM N/A 71.5 ± 0.3 74.1 ± 0.4 21.5 ± 1.9 55.7 ± 0.4
MA [Arp+21] Uniform 68.8 ± 0.2 72.1 ± 0.2 10.2 ± 0.0 50.4 ± 0.1
ENS∗ Uniform: M = 20 71.0 ± 0.2 72.9 ± 0.2 9.9 ± 0.0 51.3 ± 0.1
DiWA Greedy: M ≤ 20 71.9 ± 0.4 73.6 ± 0.2 21.5 ± 1.9 55.7 ± 0.8
DiWA Uniform: M = 20 69.1 ± 0.8 72.6 ± 0.4 10.6 ± 0.1 50.8 ± 0.4
DiWA† Uniform: M = 60 69.3 72.3 10.3 50.6
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4.6.4 DiWA with different objectives.

So far we used ERM without leveraging the domain information during training. Ta-
ble 4.4 shows that DiWA-uniform benefits from weights fine-tuned with Interdomain
Mixup [Yan+20a] and CORAL [Sun+16]: diversity increases and accuracy improves as we
add more diverse objectives. This suggests a new kind of LMC across models fine-tuned
with various objectives and losses; this idea will be further explored in rewarded soups
[Ram+23b] detailed in Chapter 6.

Table 4.4. – Accuracy (%, ↑) on OfficeHome domain “Art” with various objectives.

Algorithm No WA MA DiWA DiWA†

ERM 62.9 ± 1.3 65.0 ± 0.2 67.3 ± 0.2 67.7
Mixup 63.1 ± 0.7 66.2 ± 0.3 67.8 ± 0.6 68.4
CORAL 64.4 ± 0.4 64.4 ± 0.4 67.7 ± 0.2 68.2
ERM/Mixup N/A N/A 67.9 ± 0.7 68.9
ERM/CORAL N/A N/A 68.1 ± 0.3 68.7
ERM/Mixup/CORAL N/A N/A 68.4 ± 0.4 69.1

4.7 Conclusion

In this chapter, we highlighted the limitations of the previously dominant flatness-based
analysis of WA. We proposed a novel bias-variance-diversity-locality analysis, leveraging
the ensembling nature of WA, and underscoring a diversity-locality trade-off. This mo-
tivates our DiWA approach; by averaging the weights of independently trained models,
DiWA improves performances on DomainBed. DiWA is a simple and practical strategy,
with a straightforward implementation, making it a valuable tool for a broad range of
real-world applications. Essentially, rather than selecting the best model from a hyper-
parameter search, it suggests that superior results can be obtained by averaging all the
fine-tuned weights. Importantly, DiWA is without inference overhead, thereby removing
a key limitation of standard ensembling.

Despite its advantages, certain challenges persist. Firstly, DiWA necessitates multi-
ple independent training runs, hence does not curtail the training cost of ensembling.
However, this issue might be considered minor as fine-tunings are typically faster than
trainings from scratch. Secondly, as seen in Section 4.6.3.1, the shared initialization con-
straint limits diversity. Compared to functional ensembling that can combine arbitrary
architectures, this may be problematic in contexts where multiple foundation models are
available. Neuron permutations strategies [Ent+22; Ain+22] tried to enforce connectivity
across weights fine-tuned from different initializations, though (so far) with moderate
empirical results. Our subsequent Chapter 5 proposes an alternative to relax the shared
initialization constraint.
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R ATAT O U I L L E : R E C Y C L I N G D I V E R S E M O D E L S F O R
O U T- O F - D I S T R I B U T I O N G E N E R A L I Z AT I O N

5.1 Introduction

Learning robust models that generalize well is critical for many real-world applications
[Zec+18; DeG+21]. Fine-tuning pre-trained foundation models [Bom+21] is now the most
popular approach to build deep learning (DL) solutions for these applications. For fine-
tuning, empirical risk minimization (ERM) [Vap92] has long remained the best strategy on
the reference DomainBed [Gul+21] benchmark. Yet, as previously introduced in Chapter 4,
the ability to average neural networks’ weights inspired a plethora of modern weight
averaging (WA) approaches for fine-tuning. We illustrate some of them in Figure 5.1, such
as MA [Izm+18], WiSE fine-tuning [Wor+22b], and our DiWA [Ram+22b].

Fostered by the open-source philosophy in ML, the Internet is then swarmed by a
handful of foundation models fine-tuned on many diverse tasks: these individual fine-
tunings are available on public repositories such as torchvision [Mar+10], huggingface
[Wol+20], or timm [Wig19], yet exist in isolation without benefiting from each other. In
our opinion, this is a missed opportunity, as these specialized models contain rich and
diverse features. Recent inter-training [Pha+18; Pru+20] and fusing [Cho+22b; Don+23a]
strategies recycle intermediate fine-tunings on auxiliary tasks to enrich the features before
fine-tuning on the target task. However, the success of these recycling strategies usually
depend on the similarity between the auxiliary and target tasks. Moreover, as argued in
Section 5.2, these strategies fail to fully leverage the diversity in auxiliary tasks.

Thus, the central question of this chapter is:

How can we best recycle diverse fine-tunings of a given foundation model towards strong
out-of-distribution performance on our target task?

Our answer is model ratatouille 1, a simple fine-tuning strategy illustrated in Figure 5.1 and
described in Section 5.3. In a similar fashion to converting waste into reusable material
for new uses, we take fine-tunings of the same foundation model on diverse auxiliary
tasks and repurpose them as initializations to start multiple fine-tunings on the target
task. Specifically, we (i) fine-tune a copy of the foundation model on each auxiliary task,

1. We named our method after this traditional French dish for two main reasons. Firstly, the ratatouille
is often used as a way to recycle leftover vegetables. Secondly, the ratatouille is better prepared by cooking
each ingredient separately before mixing them: this technique ensures that each ingredient “will taste truly
of itself”, as noted by chef Joël Robuchon [Mon20].

51
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Figure 5.1. – The different fine-tuning strategies discussed in this chapter: vanilla fine-
tuning [Oqu+14], moving average (MA) [Izm+18] and variants [Wor+22b], DiWA [Ram+22b]
introduced in Chapter 4 and the similar model soups [Wor+22a], inter-training [Pha+18], fusing
[Cho+22b] and our novel model ratatouille. They start with a pre-trained foundation model. Some
strategies fine-tune the pre-trained model on auxiliary tasks (thin solid arrows ): these aux-
iliary fine-tunings can be performed by different contributors of the community on their own
data. Then, all strategies perform fine-tuning on the target task of interest (thick solid arrows ).
Finally, the weights fine-tuned on the target task are used as is, or are averaged (dashed arrows

) into a final model. Ratatouille (i) enables compute parallelism, (ii) maximizes the amount of
diversity in models’ predictions, (iii) achieves sota performance in DomainBed [Gul+21], the stan-
dard computer vision benchmark for OOD generalization and (iv) does not incur any inference
or training overhead compared to a traditional hyperparameter search.

(ii) fine-tune each auxiliary model on the target task, and (iii) return as the final model
the average of all target fine-tuned weights. In brief, while DiWA and model soups aver-
age multiple weights fine-tuned from a shared initialization, model ratatouille averages
multiple weights fine-tuned from different initializations each inter-trained [Pha+18] on
different auxiliary tasks. As we will see, ratatouille works because the fine-tunings remain
linearly mode connected (LMC) [Fra+20; Mir+21] in the loss landscape (despite having
different initializations) and thus their average improves performance.

We show the efficacy of model ratatouille in Section 5.4, where we set a new sota on Do-
mainBed [Gul+21]. We will show how we leverage the diversity across the auxiliary tasks
to construct diverse weights, that can be averaged into a final model. Looking forward, as
we discuss in Section 7.2.3, this chapter contributes to the emerging paradigm of updatable
machine learning [Raf23], where the community collaborates towards incrementally and
reliably updating the capabilities of a ML model.

This chapter led to the publication of: Alexandre Ramé, Kartik Ahuja, Jianyu Zhang,
Matthieu Cord, Léon Bottou, and David Lopez-Paz. “Model Ratatouille: Recycling Diverse
Models for Out-of-Distribution Generalization”. In: ICML. 2023.

5.2 Context

We start by describing our setup. We train a deep model f , where the featurizer is
parametrized by the weights ϕ, the classifier is parametrized by the weights ω, and thus
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f is parametrized by the concatenation weights θ = (ω, ϕ). We are dealing with out-of-
distribution (OOD) generalization, and our aim is to find θ maximizing the test accuracy
accT (θ). In this chapter, we only consider diversity shifts [Ye+22].

5.2.0.1 ERM and WA

The recipe in transfer learning [Oqu+14; Kir+22] is (i) download a pre-trained featurizer
with parameters ϕpt, (ii) plug a classifier ωlp compatible with the target task, and (iii)
fine-tune the network with empirical risk minimization (ERM) [Vap92] on the target
task. While the classifier ωlp could be initialized at random, linear probing (LP) (i.e.,
first learning only the classifier with frozen featurizer) improves results by preventing
feature distortion [Kum+22]. Based on Observation 4.1, moving average (MA) strategies
and variants [Sze+16; Izm+18; Dra+18; Arp+21; Cha+21a; Wor+22b] average the weights
of checkpoints collected every few epochs to build the final weights. More recently, as
explained in previous Chapter 4 and consistently with Observation 4.2 from [Ney+20],
our DiWA [Ram+22b] proposed to average all the weights obtained from a standard ERM
hyperparameter search. DiWA and the similar model soups [Wor+22a] are so far the best
approaches for OOD generalization. However, as highlighted in Section 4.7, the shared
initialization constraint in DiWA limits models diversity [Kun+03; Aks03]; removing this
constraint would be desirable to further reduce variance.

5.2.0.2 Weight averaging over tasks

All the methods described so far fine-tune only on the target task: could auxiliary
datasets, increasingly available online, be incorporated into the learning process to learn
richer features? Such tasks could be an opportunity to recruit specialized features [Li+21]
that match our target task, ease optimization [Zha+22; Zha+23a], or “offer some high-level
guidance to bridge the gaps between the pre-training and fine-tuning phases” [Cha+21b].
Following these ideas, inter-training approaches [Pha+18; Pru+20; Cho+22a] perform an
intermediate fine-tuning of the pre-trained model on some auxiliary task, before tack-
ling the target task. However, the sequential nature of inter-training leads to catastrophic
forgetting [Reb+17] of useful knowledge contained in the original pre-trained model.
Moreover, the choice of the auxiliary task plays a determinant role, since “when the
wrong task is chosen, inter-training hurts results” [Cho+22b]. To address the shortcom-
ings of inter-training, recent works [Cho+22b; Don+23a; Li+22; Mat+22; Ilh+23; Ilh+22]
recycle weights fine-tuned on various auxiliary tasks. In particular, concurrent [Cho+22b]
operates fusing at initialization; they (i) fine-tune one copy of the pre-trained model on
each auxiliary task, (ii) average the auxiliary fine-tuning weights, and (iii) use such aver-
aged model as the initialization for the target fine-tuning. By weight interpolation, fusing
combines into one single initialization the knowledge from multiple auxiliary tasks; yet
fusing provides only marginal empirical gains in Section 5.4.1 on DomainBed.

We posit that model fusing is performing weight averaging prematurely, destroying
most diversity from auxiliary tasks even before the target task can benefit from it. To
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Figure 5.2. – Illustrations of (a) different linear mode connectivity (LMC) conditions, and (b) model
ratatouille. In subplot (a), we illustrate Observation 4.1, about LMC between two checkpoints
along the same target fine-tuning; Observation 4.2, about LMC between two target fine-tunings;
Hypothesis 5.1, about LMC between two auxiliary fine-tunings; and Hypothesis 5.2, about LMC
between two target fine-tunings initialized from auxiliary weights satisfying Hypothesis 5.1. In
subplot (b), we offer a diagram of our proposed ratatouille strategy, where we (i) fine-tune a
pre-trained model on auxiliary tasks, (ii) plug a linear probe classifier on the pre-trained model
and the auxiliary fine-tunings, (iii) fine-tune on the target task from each auxiliary weights, and
(iv) return their weight average as the final model.

address this, next we propose ratatouille, a new recycling strategy that performs one
target fine-tuning per auxiliary weights, and averages weights only as the very last step.

5.3 Model ratatouille

5.3.1 Recycling diverse initializations

Our model ratatouille is a proposal to recycle diverse auxiliary fine-tunings of the
same pre-trained model; it is compared against other fine-tuning strategies in Figure 5.1
and outlined in detail in Figure 5.2(b). Ratatouille recycles these fine-tunings as diverse
initializations to parallel fine-tunings on the target task. Compared to fusing [Cho+22b],
we delay the weight averaging, and in turn the destruction of diversity. Ratatouille follows
this five-step recipe.

1. Download a featurizer ϕpt pre-trained on task D0.

2. Fine-tune ϕpt on each auxiliary task Di, obtaining (ωaux
i , ϕaux

i ) for i = 0, . . . ,M − 1.

3. Replace each ωaux
i by ωlp, obtained by linear probing the original pre-trained model

ϕpt on the target task D.
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4. Fine-tune each (ωlp, ϕaux
i ) on the target task D, obtaining θi = (ωi, ϕi) for i =

0, . . . ,M − 1.

5. Return as final model
∑M−1

i=0 λi · θi. To select the interpolating coefficients, we use
the same two weight selection strategies previously described in Section 4.4.4. The
first uniform averages all weights with λi =

1
M . The second greedy sorts the θi by

descending ID validation accuracy, before greedily constructing an uniform average
containing θi if and only if its addition lowers the ID validation accuracy.

If the weights from step 2 are made available online, ratatouille is without any training
overhead compared to a traditional hyperparameter search. When compared to inter-
training [Pha+18] and fusing [Cho+22b], model ratatouille avoids the difficult choice of
choosing one single initialization [Cho+22a]. The shared LP classifier facilitates LMC by
preventing feature distortions [Kum+22]. Note that we consider the pre-training task as
the auxiliary task “number zero” D0; this resembles WiSE fine-tuning [Wor+22b] and
aims at preserving the general-purpose knowledge contained in the original pre-trained
model.

In essence, auxiliary tasks helps in two ways: through their similarity with the target
task, and their diversity. As described in previous Section 4.3, successful weight averaging
(WA) requires three conditions [Ram+22b]. The weights should be:

1. individually accurate (to reduce the bias); by inter-training, ratatouille enriches
the features and thus increases individual accuracies when the auxiliary tasks are
well-chosen [Cho+22a].

2. sufficiently diverse (to reduce variance): by removing the shared initialization con-
straint from DiWA, ratatouille benefits from the additional diversity brought by
specialization on various auxiliary tasks.

3. averageable; for ratatouille to work, it requires a relaxation of the conditions under
which the LMC holds, that we detail below.

5.3.2 Novel linear mode connectivity hypotheses

We now extend Observations 4.1 and 4.2 made in Chapter 4 when including fine-
tunings on auxiliary tasks. First, we introduce Hypothesis 5.1 that posits LMC between
two models whose featurizers were fine-tuned on different auxiliary tasks.

Hypothesis 5.1 (LMC with different tasks). The LMC holds between
(
ωlp, ϕaux

1

)
and(

ωlp, ϕaux
2

)
if ϕaux

1 and ϕaux
2 are featurizers fine-tuned on two auxiliary tasks initialized from

the same pre-trained featurizer ϕpt. Here, ωlp is the linear probe of ϕpt on the target task.

Though this Hypothesis 5.1 was never formulated explicitly, it is underlying in fusing
[Cho+22b] and in other works averaging auxiliary weights. Actually, ratatouille relies on
the following Hypothesis 5.2, which enriches Hypothesis 5.1 with additional independent
fine-tunings on the target task.
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Hypothesis 5.2 (LMC with different auxiliary initializations). The LMC holds between θ1
and θ2 fine-tuned on the target task starting from initializations

(
ωlp, ϕaux

1

)
and

(
ωlp, ϕaux

2

)

satisfying Hypothesis 5.1.

Hypothesis 5.2 is the first to posit the LMC between weights fine-tuned from different
initializations. It hints towards a more general inheritance property: if two initializations
satisfy LMC, then the two final weights would too. We expect Hypotheses 5.1 and 5.2 to
hold as long as the pre-training, auxiliary and target tasks are sufficiently similar, and if
hyperparameters remain in a mild range. If these LMC hold, then we expect ratatouille to
improve generalization abilities. But this, we can only answer empirically through proper
experimentation in the upcoming Section 5.4.

5.4 Experiments

Our numerical experiments support five main claims, sorted in decreased granular-
ity. First, Section 5.4.1 showcases the sota results of ratatouille in DomainBed [Gul+21].
Second, Section 5.4.2 illustrates how such gains arise from increased diversity across aver-
aged models. Third, Section 5.4.3 empirically supports Hypotheses 5.1 and 5.2, the LMC
conditions enabling weight averaging’s success. Then, Section 5.4.4 shows that additional
auxiliary tasks improve results. Finally, Section 5.4.5 discusses the impact of ratatouille
for in-domain tasks.

5.4.1 Sota performance on DomainBed

Setup. Table 5.1 shows our main experiment comparing the various fine-tuning strate-
gies on DomainBed [Gul+21]. We follow the same procedure previously described in
Section 4.6.1. Our goal is to improve the performances previously obtained by DiWA
[Ram+22b], a.k.a. model soups [Wor+22a]. As a reminder, DiWA only differs from ERM
vanilla fine-tuning by the selection strategy: rather than selecting the model with highest
ID validation accuracy out of the 20 runs, DiWA either uniformly averages all weights or
greedily selects some. The key originality of ratatouille is to leverage auxiliary trainings;
in practice, given a target dataset, we consider the other DomainBed’s datasets as the aux-
iliary tasks. For example when tackling OfficeHome, out of the 20 runs, 4 are inter-trained
on PACS, 4 on VLCS, 4 on TerraIncognita, 4 on DomainNet and 4 are directly transferred
from ImageNet. Then, model ratatouille is to inter-training as DiWA is to vanilla fine-tuning.
As in previous Section 4.6.1, the “†” symbol marks methods averaging 60 = 20×3 weights
from 3 data splits. We further discuss ratatouille’s training cost in [Ram+23a]. The proce-
dure to obtain the pool of initializations is agnostic to the target task or the test domain,
and thus is done only once; in particular, we argue that ratatouille is without training
overhead when auxiliary weights are shared by the community. Functional ensembling
strategies (marked by the symbol “∗”) average predictions with large inference overhead:
for example, “ENS∗ of inter-training” averages the predictions of the M = 20 models
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Table 5.1. – Accuracies (%, ↑) on DomainBed [Gul+21] benchmark evaluating OOD generalization.
Ratatouille sets a new sota by leveraging diversity in auxiliary tasks. The symbol “∗” indicates
inference overhead in functional ensembling. The symbol “†” indicates the averaging of all weights
across 3 data splits. The scores for DiWA are those from Table 4.1 with LP initialization.

Algorithm Weight selection PACS VLCS OfficeHome TerraInc DomainNet Avg

Vanilla fine-tuning ID val 85.5± 0.2 77.5± 0.4 66.5± 0.3 46.1± 1.8 40.9± 0.1 63.3
CORAL [Sun+16] ID val 86.2± 0.3 78.8± 0.6 68.7± 0.3 47.6± 1.0 41.5± 0.1 64.6
SWAD [Cha+21a] Loss-aware 88.1± 0.1 79.1± 0.1 70.6± 0.2 50.0± 0.3 46.5± 0.1 66.9
MA [Arp+21] Uniform 87.5± 0.2 78.2± 0.2 70.6± 0.1 50.3± 0.5 46.0± 0.1 66.5
DE∗ [Arp+21] Uniform: M = 6 87.6 78.5 70.8 49.2 47.7 66.8

O
ur

ru
ns

Vanilla fine-tuning ID val 85.9± 0.6 78.1± 0.5 69.4± 0.2 50.4± 1.8 44.3± 0.2 65.6
ENS∗ Uniform: M = 20 88.1± 0.3 78.5± 0.1 71.7± 0.1 50.8± 0.5 47.0± 0.2 67.2
DiWA Uniform: M = 20 88.7± 0.2 78.4± 0.2 72.1± 0.2 51.4± 0.6 47.4± 0.2 67.6
DiWA Greedy: M ≤ 20 88.0± 0.3 78.5± 0.1 71.5± 0.2 51.6± 0.9 47.7± 0.1 67.5
DiWA† Uniform†: M = 60 89.0 78.6 72.8 51.9 47.7 68.0

Inter-training [Pha+18] ID val 89.0± 0.0 77.7± 0.0 69.9± 0.6 46.7± 0.1 44.5± 0.1 65.6
ENS∗ of inter-training Uniform: M = 20 89.2± 0.1 79.0± 0.2 72.7± 0.1 51.1± 0.3 47.2± 0.1 67.8
Fusing [Cho+22b] ID val 88.0± 1.0 78.5± 0.8 71.5± 0.5 46.7± 1.8 44.4± 0.2 65.8
Ratatouille Uniform: M = 20 89.5± 0.1 78.5± 0.1 73.1± 0.1 51.8± 0.4 47.5± 0.1 68.1
Ratatouille Greedy: M ≤ 20 90.5± 0.2 78.7± 0.2 73.4± 0.3 49.2± 0.9 47.7± 0.0 67.9
Ratatouille† Uniform†: M = 60 89.8 78.3 73.5 52.0 47.7 68.3

ratatouille-uniform averages in weights. For fusing [Cho+22b], each run is initialized
from

∑4
i=0 λiϕ

aux
i where the λi hyperparameters sum to 1 and ϕaux

i are inter-trained on
one the 4 other DomainBed’s datasets or directly transferred from ImageNet.

Results. Table 5.1 shows that ratatouille achieves a new sota on DomainBed: with uni-
form selection, it achieves 68.1 and improves DiWA by 0.5 points after averaging over
all datasets. Precisely, model ratatouille beats DiWA by 0.8 and 1.0 points on PACS and
OfficeHome with uniform selection, and by 2.5 and 1.9 with greedy selection. On these
two datasets, inter-training and fusing also succeed, yet they fail on TerraIncognita (both
reach 46.7%) as all auxiliary tasks are distant from photos of animals in the wild; in
contrast on TerraIncognita, ratatouille-uniform (51.8%) matches DiWA-uniform (51.4%).
This highlights the key strength of our ratatouille w.r.t. other recycling strategies such as
fusing: namely, the robustness to the choice of auxiliary tasks. On VLCS, ratatouille is also gen-
erally beneficial, except on one domain where the LMC breaks (as shown in [Ram+23a]).
For DomainNet, ratatouille is sota though the gains are small w.r.t. DiWA: we suspect this
is because the initialization strategy becomes less critical for larger datasets [Cha+21b]
with more training epochs (see Figure 5.3(b)). In conclusion, ratatouille consistently im-
proves generalization on DomainBed, and works best with appropriate auxiliary tasks:
we remove the need to select only the best initialization. This is similar to DiWA, which
works best with appropriate hyperparameter ranges; DiWA removed the need to select
only the best set of hyperparameters.
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Figure 5.3. – Explorations on Q-diversity [Kun+03] and its positive impact on accuracy for the
OOD test domain “Art” from OfficeHome. In (a), we compute the diversity between pairs of
models either directly fine-tuned from ImageNet, either inter-trained on DomainNet: having
one model from each initialization increases diversity. In (b), we plot this diversity along the 5k
training steps. In (c), we observe that the more diverse the models, the higher the accuracy gain
of their weight average compared to the average of their individual accuracies. In (d), we average
M models: a proportion (1 − µ) start directly from ImageNet, the others µ are inter-trained on
DomainNet. The accuracy of the weight average is maximized when µ ≈ 0.5.

5.4.2 Increased diversity by recycling

In Figure 5.3, we investigate how the diversity across models fine-tuned on the target
task influences the OOD performance of their WA. Here, we measure diversity with the
prediction Q-diversity [Kun+03], previously introduced in Section 2.3.3.1, which increases
when models fail on different examples; in the paper, we also arrive at similar conclusions
using the ratio-error [Aks03]. We follow the same protocol as in Section 4.6.3, and consider
OfficeHome as the target task, with “Art” as the test OOD domain; we thus train on the
“ClipArt”, “Product” and “Photo” domains. We consider models either only pre-trained
on ImageNet or also inter-trained on DomainNet.

First, we verify that inter-training influences the diversity across fine-tuned models.
Specifically, Figure 5.3(a) confirms that networks with different initializations are more
diverse than networks initialized similarly. Then, Figure 5.3(b) verifies that this diversity
gain comes from their initialization and remains along fine-tuning on the target task.
Moreover, Figure 5.3(c) shows that diversity is positively linearly correlated with OOD
generalization: having different initializations improves diversity and thus WA accuracy.
Finally, in Figure 5.3(d), we consider averaging M weights: a proportion (1 − µ) start
directly from ImageNet, the others µ were inter-trained on DomainNet. In the simplest
case M = 2, using one model from each initialization leads to maximum accuracy; for
larger M , best performances are obtained around µ ≈ 0.5, where the final WA has access
to diverse initializations. In conclusion, each auxiliary task fosters the learning of diverse
features [Li+21; Gon+22]. Model ratatouille increases diversity and improves performance
by removing a key limitation of model soups [Wor+22a] and DiWA [Ram+22b]; the need
for all fine-tunings to start from a shared initialization.
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(b) VLCS.
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(c) OfficeHome.
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(e) Camelyon.
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(f) PACS.
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(h) OfficeHome.
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Figure 5.4. – Figures 5.4(a) to 5.4(e) validate Hypothesis 5.1 by plotting λ →
accT

((
wlp, (1− λ) · ϕaux

1 + λ · ϕaux
2

))
, where wlp is the linear probe of ϕpt

IM, and ϕaux
1 and ϕaux

2

are fine-tuned on the two auxiliary datasets in the legend “Dataset1 to Dataset2”. Figures 5.4(f)
to 5.4(j) support Hypothesis 5.2 by plotting λ → accT ((1− λ) · θ1 + λ · θ2) where θ1 and θ2 are
fine-tuned on the target task starting respectively from (wlp, ϕaux

1 ) and (wlp, ϕaux
2 ). We encounter

two exceptions to Hypothesis 5.2 (Figures 5.4(i) and 5.4(j)), due to the fact that neither the aux-
iliary (RxRx) nor the target task (TerraIncognita and Cameyon) bear enough similarity with the
pre-training task (ImageNet).

5.4.3 Why ratatouille works

In Figure 5.4, we continue our experiments by validating Hypotheses 5.1 and 5.2 when
considering the five datasets from DomainBed. For the sake of completeness, we also
analyze some successes and failure cases in extreme conditions when considering two
distant unrelated medical datasets; RxRx [Tay+19] and Camelyon [Koh+21] from the
WILDS [Koh+21] benchmark. For each target task, we consider the first domain as the
test OOD; the other domains are used for training.

We validate Hypothesis 5.1 in Figures 5.4(a) to 5.4(e). For each dataset, we plot the
test OOD accuracy for the weights

(
wlp, (1− λ) · ϕaux

1 + λ · ϕaux
2

)
, where the classifier wlp

is a linear probe of the ImageNet pre-trained featurizer ϕpt
IM, and λ ∈ [0, 1] interpolates

between ϕaux
1 and ϕaux

2 , obtained by fine-tuning on two auxiliary tasks initialized from
ϕpt
IM. First, we observe that task similarity influences OOD generalization since the test

accuracies in Figure 5.4(c) agree with the fact that OfficeHome is most similar to Domain-
Net, not as similar to TerraIncognita, and most dissimilar to the medical dataset RxRx.
Second, the accuracy of the interpolated weights is above the interpolated accuracy: this validates
Hypothesis 5.1. The accuracy is even usually concave in λ.

Similarly, we empirically support Hypothesis 5.2 in Figures 5.4(f) to 5.4(j). For each
dataset, we plot the test OOD accuracy obtained with weights (1− λ) · θ1 + λ · θ2, where
the coefficient λ ∈ [0, 1] interpolates between θ1 and θ2, fine-tuned on the target task
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respectively starting from (wlp, ϕaux
1 ) and (wlp, ϕaux

2 ). We observe that Hypothesis 5.2
usually holds: for example, even recycling RxRx can help for OfficeHome on Figure 5.4(h).
Yet, Hypothesis 5.2 breaks on TerraIncognita and Camelyon in Figures 5.4(i) and 5.4(j)
when RxRx is one of the two auxiliary tasks. In light of these results, we argue that
Hypothesis 5.2 holds as long as either the auxiliary or the target task is sufficiently similar to the
pre-training task. We speculate this prevents feature distortion [Kum+22] and escaping
a shared loss valley. Better understanding when LMC breaks is a promising research
direction [Jun+23; Lub+22]; among other factors, we speculate that larger pre-training
corpus (as in [Qin+22]) or larger architectures (as in [Li+22]) may favor WA strategies.

5.4.4 Analysis of the number of auxiliary tasks
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Figure 5.5. – OOD accuracy (↑) for model ratatouille when increasing the number of auxiliary
tasks and uniformly averaging all fine-tuned weights. For each target task, we consider the first
domain as the test OOD; the other domains are used for training.

In Table 5.1, ratatouille leverages 5 auxiliary tasks for simplicity: ImageNet (which we
consider as the auxiliary task “number zero”), and the 4 other datasets from DomainBed
(out of the 5, as we leave out the target task to prevent any information leakage). In
following Figure 5.5, we report the scores obtained using 1 to 5 auxiliary tasks: we always
average M = 20 weights, the only difference is how they were initialized. When we have 1

auxiliary task, they were all inter-trained on this auxiliary task: when we have 2 auxiliary
tasks, 10 are inter-trained on the first auxiliary task, 10 on the second etc. This validates
that a greater number of auxiliary tasks leads to an increase in expected OOD accuracy.
We expect that further increasing the number of auxiliary datasets—beyond those from
DomainBed—would further improve results.

5.4.5 Ratatouille for ID tasks

Like previous WA strategies [Izm+18; Wor+22a], model ratatouille also works for in-
distribution (ID) tasks; in particular, we verify in Figure 5.6(a) that the LMC holds on
the ID validation samples, following the same distribution as the training samples. Yet,
the gains are smaller in ID than in OOD, as confirmed by the lack of correlation between
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Figure 5.6. – The models were trained on ID domains “Clipart”, “Product”, and “Photo” from
OfficeHome, thus “Art” is the OOD domain. First, in subplot (a), we validate Hypothesis 5.2 on
the ID validation split. Then, we analyze the relations between diversity, ID and OOD accuracies.
In subplot (b), we report the mean results when averaging M = 8 weights: (1− µ) are fine-tuned
on OfficeHome directly from ImageNet, the others µ are inter-trained on DomainNet. We observe
a lack of correlation between ID and OOD accuracies. We observe a similar trend in subplot
(c), which mirrors the experiment from subplot (b) with the only difference that the proportion
(1− µ) are inter-trained on PACS (rather than just transferred from ImageNet). In subplot (d), we
compute the diversity [Kun+03] between models either directly fine-tuned from ImageNet, either
inter-trained on DomainNet. Though having different initializations increases diversity both in
ID and in OOD, the diversity in ID remains smaller.

ID and OOD accuracies [Ten+22] in Figures 5.6(b) and 5.6(c). This is explained by the
fact that variance reduction from WA is less beneficial in ID than in OOD. Theoretically,
this is because, variance is smaller without distribution shift, as proved in Section 2.2.1.
Empirically, this is consistent with models’ diversity being smaller in ID, as shown in
Figure 5.6(d). Overall, diversity procedures are less useful in ID than in OOD. Ratatouille
performs well OOD thanks to the diversity brought by diverse inter-trainings; for ID, we
should sacrifice some diversity and select one single optimal initialization. This also ex-
plains occasional failures of the greedy selection (notably for TerraIncognita in Table 5.1):
based on the ID validation accuracy, only a few runs are selected and averaged, causing
smaller OOD accuracy than with the uniform selection.

5.5 Conclusion

This chapter introduces model ratatouille, broadening the foundation model paradigm
by recycling weights fine-tuned on a variety of auxiliary tasks. Ratatouille extends DiWA
by relaxing the shared initialization constraint; the fine-tunings only need to start from
initializations that are themselves linearly mode connected. This relaxation allows to
average a more diverse set of weights, which in turn leads to better OOD generalization.

The main limitation of this chapter is that we explore OOD generalization in supervised
learning scenarios, where objectives are well-defined and ground-truth labels exist. This
is not always the case in real-world applications, where defining desired behaviours are
not trivial. In the next Chapter 6, we will investigate whether WA can be beneficial for
RL tasks, specifically in the context of RLHF with diverse rewards.
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F I N E - T U N E D O N D I V E R S E R E WA R D S

6.1 Introduction

Foundation models [Bom+21] are usually pre-trained through self-supervision [Dev+19;
Bro+20; Car+21; Rad+21] and then fine-tuned [Oqu+14; Yos+14] via supervised learning
[Vap99]. This was the main scenario in previous chapters, where classification labels were
properly defined on the target task. Yet, collecting supervised labels is often expensive,
and not always possible for more subjective tasks with multiple correct answers or involv-
ing human concepts [Kwo+23] such as helpfulness [Bai+22a; Ask+21]; thus supervision
may not cover all possibilities, and fail to perfectly align [Amo+16; Tay+16; Ngo+22] the
network with the intended applications. Recent works [Sti+20b; Ouy+22; Pin+23] showed
that deep reinforcement learning (DRL) helps by learning from various types of rewards.
A prominent example is reinforcement learning from human feedback (RLHF) [Sti+20b;
Chr+17b; Zie+19; Wu+21], which appears as the current go-to strategy to refine large
language models (LLMs) into powerful conversational agents such as ChatGPT [Ouy+22;
Ope23]. After pre-training on next token prediction [Rad+18] using Web data, the LLMs
are fine-tuned to follow instructions [Wei+22a; Wan+22c; Tao+23] before reward max-
imization. This third RL step enhances alignment by evaluating the entire generated
sentence instead of each token independently [Gol23]. Similar strategies have been useful
in computer vision (CV) [Pin+23; Ren+17], for instance to integrate human aesthetics into
image generation [Lee+23; Wu+23a; Zha+23b].

Diversity of proxy rewards. RL is usually seen as more challenging than supervised
training [Dul+21], notably because the real reward—reflecting the users’ true preferences—
is often not specified at training time. Proxy rewards are therefore developed to guide the
learning, either as hand-engineered metrics [Pap+02; Lin+03; Ved+15] or more recently
in RLHF as models trained to reflect human preferences [Chr+17b; Kwo+23; Xu+23].
Nonetheless, designing reliable proxy rewards for evaluation is difficult. This reward mis-
specification [Amo+16; Pan+22] between the proxy reward and the users’ actual rewards
can lead to unforeseen consequences [Mic+20]. Moreover, the diversity of objectives in
real-world applications exacerbates the issue. In particular, human opinions can vary
significantly [Wil87; Coe00; Sch+12] on subjects such as aesthetics [Nad+19], politics or
fairness [Lop+22]. Humans have also different expectations from machines: for example,
while [Gan+22] stressed aligning LLMs towards harmless feedback, [Bai+22b] requested
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Rewarded soups
by weight interpolation
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Figure 6.1. – Figure 6.1(a) details the different steps in rewarded soup. After unsupervised pre-
training and supervised fine-tuning, we launch N independent RL fine-tunings on the proxy
rewards {Ri}Ni=1. Then we combine the trained networks by interpolation in the weight space.
The final weights are adapted at test time by selecting the coefficient λ. Figure 6.1(b) shows
our results (extended in Figure 6.2(a)) with LLaMA-7b [Tou+23a] instruct fine-tuned on Alpaca
[Tao+23], when RL fine-tuning for news summarization [Sti+20b] with N = 2 reward models
assessing diverse preferences: R1 rewards completeness while R2 rewards faithfulness. With only
two trainings (R1 and R2 rewarded on Figure 6.1(b)), the λ-interpolation (0 ≤ λ ≤ 1) reveals
the green front of Pareto-optimal solutions, i.e., that cannot be improved for one reward without
sacrificing the other. RS matches the costly yellow front of MORL [Bar+08; Li+20b] requiring
multiple trainings on different linear weightings over the rewards (1 − µ) × R1 + µ × R2 with
0 ≤ µ ≤ 1.

helpful non-evasive responses, and others’ [Irv+23] interests are to make LLMs engaging
and enjoyable. Even hand-engineered metrics can be in tension: generating shorter de-
scriptions with higher precision can increase the BLEU [Pap+02] score but decrease the
ROUGE [Lin+03] score due to reduced recall.

Towards multi-policy strategies. Considering these challenges, a single model can-
not be aligned with everyone’s preferences [Ouy+22]. Existing works align towards a
consensus-based user [Bak+22; Ova23], relying on the “wisdom of the crowd” [Bai+22a],
inherently prioritizing certain principles [Kov+23; Joh+22], resulting in unfair represen-
tations of marginalized groups [Wei+21; Kir+23; Dur+23]. The trade-offs [Pan+23] are
decided a priori before training, shifting the responsibility to the engineers, reducing
transparency and explainability [Hay+22], and actually aligning towards the “researchers
designing the study” [Ouy+22; San+23]. These limitations, discussed in Section 6.4,
highlight the inability of single-policy alignment strategies to handle human diversity.
Yet, “human-aligned artificial intelligence is a multi-objective problem” [Vam+18]. Thus,
we draw inspiration from the multi-objective reinforcement learning (MORL) literature
[Bar+08; Li+20b; Tan+03; Van+14; Roi+13; Răd+20; Mar+23; Wu+23c] and [Hay+22]; they
argue that embracing the heterogeneity of diverse rewards requires shifting from single-
policy to multi-policy approaches. As optimality depends on the relative preferences
across those rewards, the goal is not to learn a single network optimized on a single a
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priori reward, but rather to uncover a set of Pareto-optimal networks [Par64] across the
entire space of preferences.

In this chapter, we propose rewarded soup (RS) 1, an efficient and flexible multi-policy
strategy to fine-tune any foundation model. As shown in Figure 6.1(a), we first use RL to
learn one network for each proxy reward independently; then, we combine these expert
networks according to user preferences. This a posteriori selection allows for better-
informed trade-offs, improved transparency and increased fairness [Hay+22; Man+21a].
The method to combine those networks is a key contribution: rather than functional
ensembling, we perform weight interpolation. This is in line with the previous findings
from previous chapters on linear mode connectivity (LMC) [Fra+20; Ney+20]: weights
fine-tuned from a shared pre-trained initialization remain linearly connected and thus
can be interpolated. Unlike previous chapters which focused on supervised learning,
we explore LMC in RL, in a challenging setup where each training run uses a different
reward. Then, we can trade off the capabilities of multiple weights in a single final model,
without any computational overhead; this enables the creation of custom weights for any
preference over the diverse rewards.

• We propose rewarded soup for RL fine-tuning of foundation models when consid-
ering diverse rewards (Section 6.2.1).

• We analyze the LMC between weights RL fine-tuned on diverse rewards and the
Pareto-optimality of our strategy (Section 6.2.2)

• We demonstrate the effectiveness of rewarded soups across a variety of tasks: RLHF
fine-tuning of LLaMA for text-to-text (summarization, QA, helpful assistant, re-
view), multimodal text-image tasks (image captioning, text-to-image generation
with diffusion models, visual grounding, VQA), as well as control (locomotion)
tasks (Section 6.3).

This chapter has led to the submission of the following paper: Alexandre Ramé, Guillaume
Couairon, Mustafa Shukor, Corentin Dancette, Jean-Baptiste Gaya, Laure Soulier, and
Matthieu Cord. “Rewarded soups: towards Pareto-optimal alignment by interpolating
weights fine-tuned on diverse rewards”. In: arXiv preprint (2023). Further information and
resources related can be found on our website.

6.2 Rewarded soups

6.2.1 RL fine-tuning with diverse rewards

We consider a deep neural network f of a fixed non-linear architecture. It defines a pol-
icy by mapping inputs x to f(x, θ) when parametrized by θ. For a reward R̂ (evaluating
the correctness of the prediction according to some preferences) and a test domain T of de-
ployment, our goal is to maximize

∫
x∈T R̂ (f (x, θ)). For example, with f a LLM, x would

1. The name rewarded soup follows the terminology of model soup [Wor+22a], as we combine various
ingredients each rewarded differently.

https://alexrame-rewardedsoups-streamlit-apphome-pxh21g.streamlit.app/
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be textual prompts, R̂ would evaluate if the generated text is harmless [Ask+21], and T

would be the distribution of users’ prompts. Learning the weights θ is now commonly a
three-step process: unsupervised pre-training, supervised fine-tuning, and reward opti-
mization. Yet R̂ is usually not specified before test time, meaning we only have a proxy
reward R during reward optimization. This reward misspecification between R and R̂ may
hinder the alignment of the network with R̂. Moreover, the diversity of human preferences
complicates the design of R.

Rather than optimizing one single proxy reward, our paper’s first key idea is to con-
sider a family of N diverse proxy rewards {Ri}Ni=1. Each of these rewards evaluates the
prediction according to different (potentially conflicting) criteria. The goal then becomes
obtaining a coverage set of policies that trade-off between these rewards. To this end, we
first introduce the costly MORL baseline. Its inefficiency motivates our rewarded soups,
which leverages our second key idea: weight interpolation (WI).

MORL baseline. The standard multi-objective reinforcement learning (MORL) scalar-
ization strategy [Bar+08; Li+20b] (recently used in [Wu+23c] to align LLMs) linearizes
the problem by interpolating the proxy rewards using M different weightings. Specifi-
cally, during the training phase, M trainings are launched, with the j-th optimizing the
reward

∑N
i=1 µ

j
iRi, where ∀j ∈ {1, ...,M}, {µj

i}Ni=1 ∈ ∆N the N -simplex s.t.
∑N

i=1 µ
j
i = 1

and 0 ≤ µj
i ≤ 1. Then, during the selection phase, the user’s reward R̂ becomes known and

the j-th policy that maximizes R̂ on some validation dataset is selected. We typically ex-
pect to select j such that

∑N
i=1 µ

j
iRi ≈ R̂ linearly approximates the user’s reward. Finally,

this j-th weight is used during the inference phase on test samples. Yet, a critical issue
is that “minor [preference] variations may result in significant changes in the solution”
[Vam+08]. Thus, a high level of granularity in the mesh of ∆N is necessary. This requires
explicitly maintaining a large set of M ≫ N networks, practically one for each possible
preference. Ultimately, this MORL strategy is unscalable in DL due to the computational,
memory, and engineering costs involved.

Rewarded soups (RS). In this chapter, we draw inspiration from previous chapters
and leverage weight interpolation. The idea is to learn expert weights and interpolate them
linearly to combine their abilities. Specifically, we propose RS, illustrated in Figure 6.1(a)
and whose recipe is described below. By design, RS alleviates MORL’s scaling issue as it
requires only M = N trainings, while being flexible and transparent.

1. During the training phase, we optimize N expert weights {θi}Ni=1, each corresponding
to one of the N proxy rewards {Ri}Ni=1, from a shared pre-trained initialization.

2. For the selection phase, we linearly interpolate those weights to define a contin-
uous set of rewarded soups policies: {∑N

i=1 λi · θi}{λi}Ni=1∈∆N
. Practically, we uni-

formly sample M interpolating coefficients {{λj
i}Ni=1}Mj=1 from the N -simplex ∆N

and select the j-th that maximizes the user’s reward R̂ on validation samples, i.e.,
argmaxMj=1 R̂

(∑N
i=1 λ

j
iθi

)
.

3. For the inference phase, we predict using the network f parameterized by
∑N

i=1 λ
j
iθi.

While MORL interpolates the rewards, RS interpolates the weights. This is a consid-
erable advantage as the appropriate interpolating coefficients λ, which depends on the
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desired trade-off, can be selected a posteriori; the selection is achieved without additional
training, only via inference on some samples. In the next Section 6.2.2 we explicitly state
the Hypotheses 6.1 and 6.2 underlying in RS. Their empirical verification will be the main
motivation for our experiments on various tasks in Section 6.3.

6.2.2 Exploring the properties of rewarded soup

6.2.2.1 Linear mode connectivity of weights fine-tuned on diverse rewards

We consider {θi}Ni=1 fine-tuned on {Ri}Ni=1 from a shared pre-trained initialization.
Previously in Observation 4.1, the LMC was defined w.r.t. a single performance measure
(e.g., accuracy) in supervised learning. We now extend this notion in RL with N rewards,
and define that the LMC holds if all rewards for the interpolated weights exceed the
interpolated rewards. It follows that the LMC condition which underpins RS’s viability
is the Hypothesis 6.1 below.

Hypothesis 6.1 (LMC). ∀{λi}i ∈ ∆N and k ∈ {1, ..., N}, Rk (
∑

i λi · θi) ≥
∑

i λiRk (θi) .

6.2.2.2 Pareto optimality of rewarded soups

The Pareto front (PF) is the set of undominated weights, for which no other weights
can improve a reward without sacrificing another, i.e.,

PF = {θ | ∄θ′ ∈ Θ s.t.
{
Ri

(
θ′
)}N

i=1
>N {Ri (θ)}Ni=1}, (6.1)

where >N is the dominance relation in RN . In practice, we only need to retain one policy
for each possible value vector, i.e., a Pareto coverage set (PCS). We now introduce the key
Hypothesis 6.2.

Hypothesis 6.2 (Pareto optimality). The set {∑i λi · θi|{λi}i ∈ ∆N} is a PCS of {Ri}i.

Hypothesis 6.2 holds if the rewarded soups solutions, uncovered by interpolation, are
Pareto-optimal. Overall, we empirically validate Hypothesis 6.1 and Hypothesis 6.2 in
Section 6.3. Moreover, we theoretically prove in Lemma 6.1 that Hypothesis 6.2 holds
when rewards are replaced by their second-order Taylor expansion with Hessians pro-
portional to the identity (or only co-diagonalizable in Appendix C.4), a simplified setup
justifiable when weights remain close.

Lemma 6.1. Let µ̂ = (µ̂1, ..., µ̂N ) ∈ ∆N . We assume that the N rewards are quadratic; thus we
can write for i ∈ {1, ..., N}:

∀θ ∈ Θ, Ri(θ) = Ri(θi)− ηi∥θ − θi∥2 (6.2)

Then the reward Rµ̂ =
∑

i µ̂i ×Ri is maximized on the convex hull of {θ1, ..., θN}.
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Proof. The function Rµ̂ is quadratic thus has an unique global maximum θ̂:

∇θRµ̂(θ̂) = 0 =⇒
N∑

i=1

µiηi · (θ̂ − θi) = 0

=⇒ θ̂ =

∑N
i=1 µ̂iηi · θi∑N

i=1 µ̂iηi

Since all the µ̂iηi are positive or zero, and at least one is greater than zero, θ̂ is indeed in
the convex hull of {θ1, ..., θN}.

Remark 6.1. Hypotheses 6.1 and 6.2 rely on a good pre-trained initialization, making RS par-
ticularly well-suited to fine-tune foundation models. This is because pre-training prevents the
weights from diverging during training [Ney+20]. When the weights remain close, we can the-
oretically justify Hypotheses 6.1 and 6.2 by leveraging the similarity between WI and weighted
functional ensembling, as confirmed empirically in Figure 6.4(c). In contrast, the LMC would
not hold when training from scratch [Ney+20]. Moreover, pre-training addresses stability and
exploration issues [Xie+22; Yan+23b; Sek+20] in RL.

Remark 6.2. Pareto-optimality in Hypothesis 6.2 is defined w.r.t. a set of possible weights Θ. Yet,
in full generality, improvements in initialization, RL algorithms, data, or specific hyperparameters
could enhance performances. In other words, for real-world applications, the true PF is unknown
and needs to be defined w.r.t. a training procedure. In this case, Θ represents the set of weights
attainable by fine-tuning within a shared procedure. As such, in Section 6.3 we analyze Hypothe-
sis 6.2 by comparing the fronts obtained by RS and scalarized MORL while keeping everything
else constant.

6.2.2.3 Consequences of Pareto optimality for linear preferences

Lemma 6.2 (Reduced reward misspecification). If Hypothesis 6.2 holds, and for linear reward
R̂ =

∑
i µ̂iRi with {µ̂i}i ∈ ∆N , then ∃{λi}i ∈ ∆N such that

∑
i λi · θi is optimal for R̂.

In simpler terms, Lemma 6.2 implies that if Hypothesis 6.2 is true, then RS can mitigate
reward misspecification. The proof directly follows the definition of Pareto optimality. For
any preference µ̂, there exists a λ such that the λ-interpolation over weights maximizes
the µ̂-interpolation over rewards. In practice, as we will see in Figure 6.4(a), we can
set λ = µ̂, or cross-validate λ on other samples. Yet, this theoretically holds only for
R̂ linear over the proxy rewards. This follows the linear utility functions setup from the
MORL literature [Răd+20], with limitations: for example, all human preferences can not
be expressed linearly [Vam+08]. This motivates having sufficiently rich and diverse proxy
rewards to capture the essential aspects of all possible users’ rewards. Despite the lack of
theoretical guarantees, we will show in Figure 6.4(b) that weight interpolation improves
results even for non-linear R̂.
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6.3 Experiments

In this section we implement RS across a variety of standard learning tasks: text-to-
text generation, image captioning, image generation, visual grounding, visual question
answering, and locomotion. We use either model or statistical rewards. We follow a sys-
tematic procedure. First, we independently optimize diverse rewards on training samples.
For all tasks, we employ the default architecture, hyperparameters and RL algorithm; the
only variation being the reward used across runs. Second, we evaluate the rewards on the
test samples: the results are visually represented in series of plots. Third, we verify Hy-
pothesis 6.1 by examining whether RS’s rewards exceed the interpolated rewards. Lastly,
as the true PF is unknown in real-world applications, we present empirical support for
Hypothesis 6.2 by comparing the front defined by RS (sliding λ between 0 and 1) to
the MORL’s solutions optimizing the µ-weighted rewards (sometimes only µ = 0.5 for
computational reasons). Our website provides additional qualitative results.

6.3.1 Text-to-text: LLaMA with diverse RLHFs

Given the importance of RLHF to train LLMs, we begin our experiments with text-to-
text generation. Our pre-trained network is LLaMA-7b [Tou+23a], instruction fine-tuned
[Wei+22a; Wan+22b] on Alpaca [Tao+23]. For RL training with PPO [Sch+17], we employ
the trl package [Wer+20] and the setup from [Bee+23] with low-rank adapters (LoRA)
[Hu+22b] for efficiency. We first consider summarization [Sti+20b; Wu+21] tasks on two
datasets: Reuter news [Ahm17] in Figures 6.1(b) and 6.2(a) and Reddit TL;DR [Völ+17]
in Figure 6.2(b). We also consider answering Stack Exchange questions [Lam+23] in Fig-
ure 6.2(c), movie review generation in Figure 6.2(d), and helpfulness as a conversational
assistant [Bai+22a] in Figures 6.2(e) and 6.2(f). To evaluate the generation in the absence
of supervision, we utilized N = 2 different reward models (RMs) for each task, except
in Figure 6.2(f) where N = 4. These RMs were trained on human preferences datasets
[Chr+17b] and all open-sourced on HuggingFace [Wol+20]. For example in summariza-
tion, R1 [Sti+20b] mostly evaluates completeness while R2 [Che+21] evaluates faithfulness;
these two criterions are in tension, as improving one often degrades the other. For other
tasks, we rely on diverse RMs from OpenAssistant [Köp+23]; though they all assess if the
answer is adequate, they differ by their architectures and procedures.

The results are reported in Figure 6.2. The green front, defined by RS between the two
weights specialized on R1 and R2, is above the straight line connecting those two points,
validating Hypothesis 6.1. Second, the front passes through the point obtained by MORL
fine-tuning on the average of the two rewards, supporting Hypothesis 6.2. Moreover,
when comparing both full fronts, they have qualitatively the same shape; quantitatively
in hypervolume [Yen+13] (lower is better, the area over the curve w.r.t. an optimal point),
RS’s hypervolume is 0.367 vs. 0.340 for MORL in Figure 6.2(a), while it is 1.176 vs. 1.186

in Figure 6.2(b). Finally, in Figure 6.2(f), we use N = 4 RMs for the assistant task and

https://alexrame-rewardedsoups-streamlit-apphome-pxh21g.streamlit.app/
https://huggingface.co/models
https://open-assistant.io/
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Figure 6.2. – RLHF results in NLP with LLaMA-7b [Tou+23a] and reward models Ri from Hug-
gingFace [Wol+20]. The blue line reports checkpoints’ results along the training trajectory of θ1
rewarding R1, the red line θ2 rewarding R2, and the purple line the MORL rewarding R1+R2

2 . Our
rewarded soup (RS) linearly interpolates between the weights θ1 and θ2; sliding the interpolation
coefficient λ from 0 to 1 reveals the green solid front of rewarded soups solutions. In Figures 6.2(a)
and 6.2(b), we additionally show the multiple MORL runs rewarding (1− µ)×R1 + µ×R2 with
preferences 0 ≤ µ ≤ 1. It reveals a similar yellow front, yet more costly. In Figure 6.2(f), we
uniformly (λi =

1
4 ) average the weights fine-tuned for the assistant task on N = 4 reward models.

uniformly average the N = 4 weights, confirming that RS can scale and trade-off between
more rewards.

6.3.2 Image-to-text: captioning with diverse statistical rewards

RL training is also effective for multimodal tasks [Pin+23], for example in image cap-
tioning [Ren+17] where the task is to generate textual descriptions of images. Precisely
evaluating the quality of a prediction w.r.t. a set of human-written captions is a chal-
lenging task, thus the literature relies on various hand-engineered, non-differentiable
metrics: e.g., the precision-focused BLEU [Pap+02], the recall-focused ROUGE [Lin+03],
METEOR [Ban+05] handling synonyms and CIDEr [Ved+15] using TF-IDF. As these met-
rics are proxies for human preferences, good trade-offs are desirable. We conduct our

https://huggingface.co/models
https://huggingface.co/models
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experiments on COCO [Lin+14], with an ExpansionNetv2 [Hu+22a] network and a Swin
Transformer [Liu+22] visual encoder, initialized from the sota weights of [Hu+22a] op-
timized on CIDEr. We then utilize the code of [Hu+22a] and their self-critical [Ren+17]
procedure (a variant of REINFORCE [Wil92]) to reward the network on BLEU1, BLEU4,
ROUGE or METEOR.

We observe in Figure 6.3 that tuning solely BLEU1 sacrifices some points on ROUGE or
BLEU4. Yet interpolating between θ1 and θ2 uncovers a convex set of solutions approximat-
ing the ones obtained through scalarization of the rewards in MORL. When comparing
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Figure 6.3. – Results in image captioning on COCO [Lin+14]. As rewards R1 (blue stars every
epoch) and R2 (red stars), we consider standard statistical metrics: BLEU1 (1-gram overlap),
BLEU4 (4-grams overlap), ROUGE, METEOR and CIDEr. Figure 6.3(a) include the MORL training
trajectories optimizing (1−µ)×BLEU1+µ×ROUGE, uncovering a yellow front similar to RS’s
green front. In Figure 6.3(c), RS uniformly averages the 5 weights (one for each reward), resulting
in the largest area and the best trade-off between the 5 rewards.
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Figure 6.4. – Refined results in captioning with R1 = BLEU1 and R2 = ROUGE. Figure 6.4(a)
empirically validates Lemma 6.2 by reporting results of RS (for varying λ) and of MORL (for
varying µ) for varying user’s preference µ̂. In Figure 6.4(b), all rewards are used for evaluation
as a function of the interpolating coefficient. In Figure 6.4(c), we report the front of the costly
functional ensembling [Han+90; Lak+17] of predictions (rather than the weight interpolation ).
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both full fronts in Figure 6.3(a), they qualitatively have the same shape, and quantitatively
the same hypervolume [Yen+13] of 0.140. One of the strengths of RS is its ability to scale
to any number of rewards. In Figure 6.3(c), we uniformly (λi =

1
5 ) average N = 5 weights

fine-tuned independently. It improves upon the initialization [Hu+22a] and current sota
on all metrics, except for CIDEr, on which [Hu+22a] was explicitly optimized.

Figure 6.4 refines our analysis of RS. In Figures 6.4(a) and 6.4(b), rewards are nor-
malized to 1 for the initialization and 0 for the worst model. Figure 6.4(a) validates
Lemma 6.2: for any linear preference µ̂ over the proxy rewards, there exists an optimal
solution in the set described by RS. Two empirical strategies to set the value of λ are close
to optimal: selecting λ = µ̂ if µ̂ is known, or cross-validating (CV λ) if a different data
split [Kar+15] is available. Moreover, Figure 6.4(b) investigate all metrics as evaluation.
Excluding results’ variance, we observe monotonicity in both training rewards, linear in
BLEU1 and quadratic in ROUGE. For other evaluation rewards that cannot be linearly
expressed over the training rewards, the curves’ concavity shows that RS consistently
improves the endpoints, thereby mitigating reward misspecification. The optimal λ de-
pends on the similarity between the evaluation and training rewards: e.g., best BLEU2 are
with small λ. Lastly, as per Lemma 4.1, Figure 6.4(c) shows that RS succeeds because WI
approximates functional ensembling, interpolating the predictions rather than the weights.
Actually, ensembling performs better, but it cannot be fairly compared as its inference
cost is doubled.

6.3.3 Text-to-image: diffusion models with diverse RLHFs

Beyond text generation, we now apply RS to align text-to-image generation with human
feedbacks [Lee+23; Wu+23a; Xu+23]. Our network is a diffusion model [Ho+20] with 2.2B
parameters, pre-trained on a dataset from MetaAI of 300M images; it reaches similar
quality as Stable Diffusion [Rom+22], which was not used for copyright reasons. To
represent the subjectivity of human aesthetics, we employ N = 2 open-source reward
models: ava, trained on the AVA dataset [Mur+12], and cafe, trained on a mix of real-life
and manga images. We first generate 10000 images; then, for each reward, we remove half
of the images with the lowest reward’s score and fine-tune 10% of the parameters [Xie+23]
on the reward-weighted negative log-likelihood [Lee+23]. As a side note, on-policy RL
would require performing loops of image generations and model fine-tunings [Don+23b],
but we only perform a single offline iteration for simplicity.

The results displayed in Figure 6.5(a) validate Hypothesis 6.1, as the front described by
RS when sliding λ from 0 and 1 is convex. Moreover, RS gives a better front than MORL,
validating Hypothesis 6.2. Interestingly, the ava reward model seems to be more general-
purpose than cafe, as RL training on ava also enhances the scores of cafe. In contrast,
the model θcafe performs poorly in terms of ava in Figure 6.5(a). Nonetheless, RS with
(1 − λ) · θava + λ · θcafe outperforms θava alone, not only in terms of cafe, but also of ava
when λ ∈ {0.1, 0.2}. These findings confirm that RS can better align text-to-image models
with a variety of aesthetic preferences. This ability to adapt at test time paves the way for
a new form of user interaction with text-to-image models, beyond prompt engineering.
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Figure 6.5. – Figure 6.5(a) reports our RLHF experiments on text-to-image generation with diffu-
sion models. From the pre-trained initialization, we learn θava and θcafe by optimizing the two
reward models ava and cafe. Interpolation between them reveals the green Pareto-optimal front,
above the yellow MORL front. Figures 6.5(b) and 6.5(c) report our results in visual grounding on
RefCOCO+ [Yu+16], where we optimize to predict boxes with IoU> 0.5 w.r.t. the ground-truth,
for objects of either small, medium or large size.

6.3.4 Text-to-box: visual grounding of objects with diverse sizes

We now consider visual grounding (VG) [Yu+16]: the task is to predict the bounding
box of the region described by an input text. We use a seq-to-seq unified model predicting
the box auto-regressively as a sequence of location tokens [Wan+22a]. This model is pre-
trained on a large image-text dataset, then fine-tuned with cross-entropy for VG; finally,
we use a weighted loss between the cross-entropy and REINFORCE in the RL stage.
As the main evaluation metric for VG is the accuracy (i.e., intersection over union (IoU)
> 0.5), we consider 3 non-differentiable rewards: the accuracy on small, medium, and
large objects. We design this experimental setup because improving results on all sizes
simultaneously is challenging, as shown in Figure 6.5(c), where MORL performs similarly
to the initialization.

The results in Figure 6.5(b) confirm that optimizing for small objects degrades perfor-
mance on large ones; fortunately, interpolating can trade-off. In conclusion, we can adapt
to users’ preferences at test time by adjusting λ, which in turn changes the object sizes
that the model effectively handles. On the one hand, if focusing on distant and small
objects, a large coefficient should be assigned to θSmall. On the other hand, to perform
well across all sizes, we can recover initialization’s performances by averaging uniformly
(in Figure 6.5(c)).
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6.3.5 Text&image-to-text: VQA with diverse statistical rewards
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Figure 6.6. – VQA results.

We explore visual question answering (VQA), where
the task is to answer questions about images. we use the
OFA model [Wan+22a] (generating the answers token-by-
token), on the VQA v2 dataset, pre-trained with cross-
entropy, and fine-tuned with REINFORCE during the RL
stage. During the RL fine-tuning, we explore as rewards
the BLEU (1-gram) and METEOR metrics: these metrics
enable assigning partial credit if the ground-truth and pre-
dicted answers are not identical but still have some words
in common.

Our results in Figure 6.6 validate the observations al-
ready made in previous experiments: RL is efficient to op-
timize those two rewards, and RS reveals a Pareto-optimal
front to balance between them.

6.3.6 Locomotion with diverse engineered rewards
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Figure 6.7. – Locomotion re-
sults.

Teaching humanoids to walk in a human-like man-
ner [Dua+16] serves as a benchmark to evaluate RL
strategies [Ng+99] for continuous control. One of the
main challenges is to shape a suitable proxy reward
[Dor+94; Dew14], given the intricate coordination and
balance involved in human locomotion. It is stan-
dard [Tod+12] to consider dense rewards of the form
R = velocity − α×∑t a

2
t , controlling the agent’s velocity

while regularizing the actions {at}t taken over time. Yet,
the penalty coefficient α is challenging to set. To address
this, we devised two rewards in the Brax physics engine
[Fre+21]: a risky R1 with α = 0, and a more cautious R2

with α = 1.

Like in all previous tasks, RS’s front in Figure 6.7 exceeds the interpolated rewards,
as per Hypothesis 6.1. Moreover, the front defined by RS indicates an effective balance
between risk-taking and cautiousness, providing empirical support for Hypothesis 6.2,
although MORL with µ = 0.5 (i.e., α = 0.5) slightly surpasses RS’s front. For a more
qualitative and intuitive assessment, we provide animations of our RL agent’s locomotion
on our website.

https://alexrame-rewardedsoups-streamlit-apphome-pxh21g.streamlit.app/
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6.4 Discussion and related work

We previously consider the LMC when fine-tuning with different losses in Section 4.6.4
(as in [Cro+23]) or on different tasks in Chapter 5 (as in [Ilh+22; Don+23a; Ram+23a;
Dim+22]): the key contribution of this Chapter 6 is to investigate the LMC in RL. Like in
supervised learning, we confirm in Figure 6.4(c) that WI succeeds due to its similarity with
ensembling. The most similar works are for control system tasks: [Law+23] averaging
decision transformers and [Gay+22] explicitly enforcing connectivity in subspaces of
policies trained from scratch on a single reward.

When dealing with multiple objectives in DL, the common strategy is to combine them
into a single reward [Roi+13; Răd+20]. For example, [Gla+22] sum the predictions of a
preference RM (as a proxy for helpfulness) and a rule RM (detecting harmful contents,
by utilizing itself a set of diverse rules); [Wu+23c] assign different weightings to the rele-
vance/factuality/completeness rewards, thereby customizing how detailed and lengthy
the LLMs responses should be. The main reason why single-policy approaches are not
suitable is that they optimize over a single set of preferences. In contrast, we build a cov-
erage set of Pareto-optimal policies. This is important for the following reasons, mostly
first discussed in Kirk et al. [Kir+23] and in Hayes et al. [Hay+22]. First, the user’s true
reward is highly uncertain before training. This “semi-blind” [Hay+22] manual process
forces a priori and uncertain decisions about the required trade-offs. Critically, RLHF may
cause the “tyranny of the crowdworker” [Kir+23], convering the opinions of a few indi-
viduals. Moreover, biases are caused by chaotic engineering choices, and “are exacerbated
by a lack of [...] documentation” [Kir+23]. In this dynamic utility function scenario, RS
can quickly adapt with fewer data, by simply adjusting the λ to match new preferences.
Finally, RS could also improve the interpretability and explainability of the decisions.

The multi-policy alternatives [Bar+08; Li+20b; Tan+03; Van+14; Mar+23] are usually
not suitable because of their computational costs required to learn a dense set of policies. To
reduce the cost, [Won+20; Yan+20b; Abd+20; Lin+22] build experts and then train a new
model to combine them; [Mos+16; Wil+07; Ngu+20] share weights across experts; [Cas+13;
Yan+19b; Abe+19; Pes+21] directly train a single model; the recent and more similar work
[Hua+23] learns one linear embedding per (locomotion) task that can be interpolated. Yet,
these works are mostly for academic benchmarks [Tod+12; Vam+11]; adapting them to
larger tasks (e.g., RLHF for foundation models with PPO) is challenging as they modify
the training procedure. Among the ensembling-like RL strategies [Wan+10; Mor+15;
Raj+17] such as population-based training [Jad+17; Jad+19], [Par+20; Osa+22] explicitly
increase the diversity across policies, yet never considering foundation models nor weight
interpolation. In contrast, RS is compatible with the inherent iterative engineering process
of alignment. Indeed, RS can continually include adjusted opinions while preventing
forgetting of the old behaviours. This relates to the continual learning challenge, and the
empirical observations that weight averaging can reduce catastrophic forgetting [Sto+22;
Eec+22]. Our strategy only trains the proxy rewards independently and enables the
selection of the interpolating coefficient a posteriori. This is especially useful with large
number of rewards and thus growing number of combinations. Finally, its distributed
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nature makes RS parallelizable thus practical in a federated learning setup [McM+17]
where data must remain private.

Finally, our a posteriori alignment with users facilitates personalization [Sal+23] of
models. As discussed in [Kir+23], this could increase usefulness by providing tailored
generation, notably to under-represented groups. This is all the more important as human
preferences change from time to time. Yet, this personalization comes with risks for indi-
viduals of “reinforcing their biases [...] and narrowing their information diet” [Kir+23].
This may worsen the polarization of the public sphere. Under these concerns, we con-
cur with the notion of “personalization within bounds” [Kir+23], with these boundaries
potentially set by weights fine-tuned on diverse and carefully inspected rewards.

6.5 Conclusion

As AI systems are increasingly applied to crucial real-world tasks, there is a pressing
issue to align them to our specific and diverse needs, while making the process more trans-
parent. In this chapter, we propose rewarded soup, a weight interpolation strategy that
efficiently yields Pareto-optimal solutions to mitigate reward misspecification. Our exper-
iments have consistently validated our working LMC hypotheses for various significant
large-scale tasks, involving multiple modalities and different fine-tuning strategies. This
confirms that weight interpolation can be a practical strategy to approximate functional
ensembling for real-world applications, such as RLHF to transform LLMs into helpful
and harmless conversational agents. We hope to inspire further research in exploring
how the generalization literature in DL can help for alignment, to create AIs handling the
diversity of opinions. As we discuss in the closing Chapter 7 of this thesis, this alignment
is critical to ensure safe and ethical progress in the future.
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C O N C L U S I O N

We summarize the contributions of this thesis, offer some future directions and finally
discuss the risks posed by the recent and rapid progress in AI.

7.1 Contributions

Our works throughout this thesis deal with the efficient ensembling of diverse models,
mostly to improve OOD generalization in DL. Theoretical considerations were essential
to drive the experiments: yet, for the sake of clarity, we separate theoretical and empirical
contributions in this concluding section. We also discuss the societal impact of our work
in Appendix B.

7.1.1 Theoretical contributions

Our main theoretical contribution is the initial discussion in Section 2.2 relating variance
to diversity shift and bias to correlation shift. This novel understanding of the two kinds of
distribution shifts opened up ways to predict when ensembling could be beneficial, and
identified scenarios where other strategies (such as those based on invariance developed
in Appendix E) would be necessary. We clarify the role of diversity in ensembling, through its
similarity with covariance, and further analyzed it from an information theory perspective
in Chapter 3. We also provide new guarantees for the effectiveness of weight averaging under
distribution shifts, based on its similarity with functional ensembling. We depart from the
traditional flatness-based arguments, critically examined and dismantled in Section 4.2.2.
Overall, we highlight trade-offs in DL: between bias and variance in supervised learning,
between individual accuracy and diversity in ensembling, between diversity and locality
in weight averaging, and between different rewards in reinforcement learning.

7.1.2 Empirical contributions

deep learning is (above all) an empirical science, where bounds and theoretical argu-
ments often serve more as indicators than absolute truths. We have worked extensively
on the empirical benefits of weight averaging (WA): it is scalable, effective in OOD gener-
alization, and aligns well with the inherent iterative engineering process of DL. Actually,
the main strength of WA lies in its simplicity, facilitating its adoption by the community, in
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line with the “bitter lesson” from [Sut19]. Moreover WA is compatible with other tools
and is boosted by the massive adoption of the foundation models [Bom+21] paradigm in
the DL community. Actually, we emphasize a novel benefit from this foundation model
paradigm; though it is commonly used to increase individual performance, we highlight
its ability to tackle the computational burden of ensembling:

• at training: fine-tuning is more efficient than training from scratch, making M ≫ 1

fine-tunings realistic,

• at inference: as fine-tuning enforces the LMC, allowing us to simply average the M

weights rather than the predictions.

A significant part of this thesis revolves around the concept of diversity, especially useful
to improve OOD generalization. The conclusion from Section 5.4.5 is that, when aiming
at OOD with ensembling strategies, there actually exists a trade-off between diversity
and ID accuracy. This finding contrasts with [Mil+21] and goes against the prescription
in [Wen+22] that, “to make the model more robust on OOD data, the main focus should
be to improve the ID classification error”. This emphasis on diversity goes beyond the
ensembling setup: in Chapter 6, we embrace the diversity of opinions in RL, and show
that handling diverse rewards is necessary for better alignment; in Appendix E, we show
that diversity in training domains and learned features enhance the robustness of models
under correlation shift. Overall, we helped popularize diversity as a key concept.

To summarize, we provide below an analytical formulation with equations of the dif-
ferent fine-tuning strategies considered along this thesis, where θ represents the weights,
Ai the auxiliary tasks, D the target task, and Ri the potential different rewards.

θ = Train
(
θpt, D

)
, [Vanilla fine-tuning [Oqu+14]]

θ = Train
(
θpt, D, collect_ckpts = True

)
, [Moving average [Izm+18]]

θ =
1

M

M−1∑

i=0

Train
(
θpt, D

)
, [DiWA [Ram+22b] Chapter 4]

θ = Train
(
Train

(
θpt, Ai

)
, D
)
, [Inter-training [Pha+18]]

θ =
1

M

M−1∑

i=0

Train
(
Train

(
θpt, Ai

)
, D
)
, [Model ratatouille [Ram+23a] Chapter 5]

θ =

M−1∑

i=0

λiTrainRL
(
θpt, D,Ri

)
, [Rewarded soups [Ram+23b] Chapter 6]

7.2 Future work

The works presented in this thesis has laid the groundwork for numerous exciting
research directions.
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7.2.1 Improved generalization

I believe the potential of RL for OOD generalization is still relatively unexplored. RL
could be harnessed to directly optimize certain invariance or fairness metrics, bypassing
the need for differentiable proxies. Notably, this could be applied to optimize directly
the true invariance objective IRM [Arj+17] (rather than a proxy differentiable loss) or
expected calibration error (ECE) [Guo+17].

Moreover, current strategies for correlation shift always implicitly incorporate funda-
mental a priori assumptions (within the data split or the validation dataset) concerning
which features should be considered spurious or not. Moreover, they often assume the
uniqueness of the spurious information (e.g., color in ColoredMNIST), and would fail
otherwise (e.g., color and background). Combining such methods with weight interpola-
tion (as in Chapter 6) could provide Pareto-optimal fairness solutions [Che+23]. This would
facilitate a posteriori decision-making when balancing between (potentially conflicting)
diverse fairness constraints [Lop+22], and simplify external regulation.

7.2.2 Weight averaging

Though WA is now widely used by the DL community [Wor23], its theoretical under-
standing is still lacking, even in the simplest case of moving averages [Izm+18]. Our best
theory relies on the similarities between weight interpolation and functional ensembling,
with guarantees only when weights remain close. Interestingly, this does not explain the
following fact: WA consistently outperforms ENS in OOD (as shown in Figure 4.5) but the
opposite is true ID (as illustrated in [Wor+22a]). To better understand this surprising
insight, we have already conducted a preliminary “label corruption” experiment suggest-
ing that WA mitigates memorization. More precisely, we trained two models on the same
dataset, but we occasionally corrupt the labels for the first model: we observe that averag-
ing the predictions with ENS can memorize the corrupted labels, yet that averaging the
weights with WA actually forgets them. Could this phenomenon be linked to a form of
invariance across different runs? This represents an intriguing direction to better understand
WA robustness.

So far we mostly used WA to improve OOD generalization and alignment, yet WA
has numerous other potential applications. A fascinating phenomenon is WA’s capacity to
combine the capabilities of various models. For instance, [Ilh+23] showed that we can edit
models with task arithmetic; negative coefficients in interpolation can eliminate specific
undesired behaviors. Another study [Jan+23] demonstrated that averaging an English
summarizer and an English-to-French translator can produce summaries in French. We
briefly examined this in our workshop paper [Ram+22c]; yet, this phenomenon remains
an active area of research [Ort+23]. More generally, WA has the potential to be a crucial
component of efficient scaling strategies as a simple parallelization method [Wor+23], elim-
inating complex multi-node synchronization. This could be refined with data selection
strategies such as pruning [Ro+23] and partitioning [Li+22]. As a side note, this is consis-
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tent with recent rumors suggesting that GPT-4 [Ope23] is actually an ensemble of sixteen
experts GPT-3.5, trained on different corpus; one for maths, one for legal, etc.

7.2.3 Towards updatable ML

Furthermore, WA could facilitate iterative and updatable ML [Raf23]. We envision a future
where DNNs can be incrementally improved and recombined, allowing for the collab-
orative creation of increasingly sophisticated AI systems. The core idea is to consider
networks as pieces of software [Kar17] and mirror the pipelines used for open-source
development of software engineering via version control. Recent works [Mat+22; Li+22;
Don+23a; Cho+22a] and ratatouille proposed in Chapter 5 give some primitives to learn
DNNs in collaboration. Put simply, git clone is pre-training, git commit are fine-tunings
performed by individual contributors on their specific tasks, git merge is replaced by WA,
and git test would try to measure models’ statistics and failures on external datasets.
Actually, the recent Git-Theta [Kan+23] follows these principles. In terms of privacy, such
a federated learning setup [Li+19; Adn+22] where datasets can be kept private does in-
deed seem desirable. In terms of computation and sustainability, minimal communication
across servers enable embarrassingly simple parallelization [Li+22; Wor+23], reducing
costs and CO2 emissions. The ability to collaboratively improve weights shifts from pro-
prietary network training to open-source collaborative network building, leveraging distributed
computing resources such as single-GPU desktop machines. We see this as an exciting
possibility for the future of AI.

7.2.4 Towards more general AI

A key challenge is transitioning from classification towards more general tasks, involv-
ing rewards challenging to define [Kwo+23]. An intriguing approach I plan to explore
is reinforcement learning from AI feedback (RLAIF) [Bai+22b], where the rewards are
generated by other AI reward models. The key difference with RLHF is that those reward
models do not necessarily require human feedback. Factual generation serves as an in-
teresting example; in [Roi+23], the reward model was pre-trained on textual entailment
assessment [Dag+05]. Another central idea from [Bai+22b] is to inscribe foundational
principles in the rewards, similar to Asimov’s universal laws for robots. The self-recursive
approach [Gou+23; Mad+23; Sun+23] uses AI’s own predictions, generating a critique
followed by a revision, leveraging LLMs’ in-context capabilities that make them generate
superior responses when guided with specific “step by step” prompts [Wei+22c; Yao+23].
Those rewards models could be expanded by various tools [Sch+23; Yan+23a], ranging
from web access [Nak+21], to employing citation experts [Men+22], expert networks
[She+23], or planners [Liu+23]. In relation to this thesis, debates and consensus among
different LLMs could also help [Irv+18]. Moreover, rewards usually evaluate the full gen-
eration, without clarifying which parts contain what types of errors; a promising idea is to
reward the process [Lig+23; Wu+23b] rather than the output, to precisely explicitly indicate
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“which sentence is false, which sub-sentence is irrelevant” [Wu+23b]. The diversity of
those potential fine-grained reward models strengthen the multi-objective approach intro-
duced in Chapter 6. For example, [Wu+23b] incorporates multi-dimensional evaluation
such as factuality, irrelevance, and information incompleteness. This work [Wu+23b] and
our rewarded soup [Ram+23b] are limited to linear preferences over those proxy rewards;
considering more complex combinations [Vam+18; Vam+08] is a promising direction, as
in [Tou+23b] where they leverage a piecewise combination of rewards.

Finally, LLMs have significantly moved us closer to creating general-purpose AI; nev-
ertheless, their current limitation to a single modality (text) restricts their understanding
and interaction with the world. The intuition is that an AI, in order to become general,
must embody itself, take shape, in order to face the unexpected and solve new problems.
To handle diverse tasks across numerous modalities, we thus need robust multimodal mod-
els, such as the unified models [Ala+22; Wan+22a] and our proposed UniVAL [Shu+23].
To embed those novel AI prior to real-world deployment, they could be deployed in open-
world synthetic environments [Zhu+23], both to reduce computational costs and provide
better understanding of ethical dilemmas [Pan+23]. This discussion leads us seamlessly
into the final and critical part of this thesis: AI safety.

7.2.5 AI safety

The recent and rapid scaling of LLMs poses both opportunities and major con-
cerns [Amo+16], causing a wave of inquiry about the potential negative impacts; scenarios
relegated to science fiction just a few years (months?) back seem now less far-fetched.
OpenAI [Jan23] summarized it this way:

Superintelligence will be the most impactful technology humanity has ever invented, and could
help us solve many of the world’s most important problems. But the vast power of

superintelligence could also be very dangerous, and could lead to the disempowerment of
humanity or even human extinction.

Recently, some leading experts advocated for a pause [Lif23] in scaling and deployment.
Therefore, without forgetting the fantastic possibilities opened by AI, we need to draw
our attention towards the potentially negative societal consequences.

7.2.5.1 Risks

Drawing from [Eve+18; Wei+22d; Bru15], we enumerate below a progression from
current harms to more speculative risks.

• Biased discrimination, hate-speech and exclusion.

• Misinformation harms: hallucinations and spread of false news.

• Environmental harms: energy consumption and hardware manufacturing.

• Socioeconomic harms: increased inequality, job displacement, reduction in human
creativity, monopoly on hardware.
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• Information hazards: privacy breaches and data leaks.

• Individual malicious uses: cyber attacks, fraud.

• Governmental oppressions: surveillance, censorship.

• Human-computer interaction harms: anthropomorphizing and trust exploitation.

• Power-seeking behaviors: (functional) deception and manipulation.

Though there is scientific consensus regarding the current harms first listed, the plausibil-
ity of the more speculative risks remains a subject of ongoing debates in the community
[AI 23]. While Meredith Whittaker has stated “There’s no more evidence now than there
was in 1950 that AI is going to pose these existential risks,”, there are actually recent
works suggesting the contrary [Hen+23; Hen+22; Hen23].

7.2.5.2 On the difficulty of alignment

The high uncertainty surrounding these questions calls for caution, and highlight the
importance of building human-aligned AI that behaves in accordance with what we want. This
alignment [Tay+16; Ken+21; Ngo+22] is complex, with challenges usually split into two
categories: outer alignment and inner alignment.

Outer alignment. How can we design a robust and reliable reward aligned with the
intended goal of its designers? This comes with several challenges:

• Proxy gaming. There is a risk that reward models could be exploited adversarially
[Ska+22]. Then an AI may find loopholes or shortcuts to maximize its rewards
without achieving the desired behaviour, a phenomenon known as wireheading.

• Lack of robustness [Gao+22]. There is a risk that the reward does not sufficiently
cover all potential harms. Then an AI could meet the desired objective while ne-
glecting long-term consequences and negative side-effects.

More broadly, these issues refer to Goodhart’s law [Smi21]: “when a measure becomes a
target, it ceases to be a good measure”.

Inner alignment. The second question is: assuming a suitable reward, how can we
make sure an AI truely optimizes it on test samples? This comes with several challenges:

• Underfitting, due to a lack of exploration (an inherent challenge in RL) leading to
poor performances (even in train).

• Overfitting, due to the optimization of a specific reward on specific training samples,
leading to poor generalization on samples not seen in training.

• Goal misgeneralization [Sha+22; Di +22] caused by spurious correlations between
domains and rewards in training.

Actually, without constraints on the test distribution, complete inner alignment may be
impossible [Wol+23], for instance, for LLMs with prompts of arbitrary (long) length.
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Remark 7.1. An intriguing yet-to-developed solution to this inner-alignment challenge is
objective-driven AI, as advocated by Yann LeCun [LeC22]; instead of the current RL fine-tuning
paradigm, they would use a reward-guided decoding, maximizing objectives during inference time
when acting in the world; we would only accept model predictions if they meet specific safety con-
straints (as in sample-and-rank [Kul+20]), leading to a controllable AI that behave appropriately.

7.2.5.3 Alignment as OOD generalization?

The encouraging aspect is that these challenges are intricately related to the focus of
this thesis: how to prevent failures under novel test distributions.

• Outer-alignment appears as an OOD challenge from the perspective of the reward
model. Indeed, reward models are trained on a preference dataset whose inputs
are generated by a base LLM and annotated by humans; then, they are used to
evaluate generations of this LLM but updated multiple times. The temporal gap
and those updates indicate a distribution shift, and thus requiring robust reward
models generalizing beyond the preference dataset. To tackle the distribution shift,
seminal alignment strategies [Chr+17b] used ensembling of reward models. More
recently in LLaMA 2 [Tou+23b], to ensure that the reward models remain within
distribution, they continually accumulate new reward modeling data.

• Inner alignment appears as an OOD challenge from the perspective of the AI. In-
deed, most issues stem from a situation where the AI aligns with the reward on
training samples, but this alignment does not persist due to distribution shift be-
tween the fine-tuning distribution and the real-world deployment.

Given this, I believe that tools from the OOD generalization literature could help to tackle the
alignment challenge. For instance, in Chapter 6 we reduce reward misspecification using
WA strategies first developed in Chapters 4 and 5 to reduce model underspecification
[DAm+20] for OOD generalization. That was a first step towards improved alignment,
requiring further investigation.
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Openings

The rising importance of AI in our daily lives renders these ethical and technical
questions increasingly critical. As I conclude this thesis, I would like to offer a more
personal reflection on the matter. I posit that AI will soon become a crucial point of
debate in our society, akin to the discourses surrounding the current ecological crisis.
More specifically, I anticipate that AI will emerge as a new axis of left-right political
polarization, with the left advocating for stringent regulation to protect workers and
ensure fairness, and the right adopting a more liberal approach and optimistic view on
the benefits of AI, to stimulate economic growth and improve the quality of life. Those
issues are multifaceted and certainly call for nuanced perspectives.

Need for better risk evaluation. Then it is our goal as scientists to provide well-
founded answers to those technical questions, assisting regulators, policymakers, and the
general public in making informed decisions. A crucial aspect of this is striving for a sci-
entific understanding and consensus about the inner workings (potentially through mech-
anistic interpretability [Nan+23]) and the abilities (through scalable oversight [Bow+22])
of these systems; this will enable us to accurately estimate any potential risks they may
pose. We could learn a lot from climate scientists’ efforts, failures and successes, and
their international panels such as the IPCC (a.k.a. GIEC). Fostering synergy between big
tech, public labs, and governments could aid us in ensuring safety precautions and in
circumventing any potential prisoner’s dilemma situations.

Need for more robust models. As scientists, our responsibility also lies in enhancing
the robustness of these models and providing better safety guarantees, while mitigat-
ing the (currently present) sociological and environmental harms, as further discussed
in Appendix B. This could pave the way for a novel era of prosperity and well-being,
and assist humanity in addressing the numerous challenges we currently face. Moving
forward, I plan to continue working on generalization, and investigating how the gener-
alization literature can be used for alignment. I eagerly look forward to contributing to
the development of AI systems that bring benefits to our society as a whole.
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A.1 Acronyms

AI artificial intelligence

BN batch normalization

CEB conditional entropy bottleneck

CKAC centered kernel alignment complement

CNN convolutional neural network

CV computer vision

DA data augmentation

DE deep ensembling

DL deep learning

DNN deep neural network

DRL deep reinforcement learning

ECE expected calibration error

ENS ensembling

ERM empirical risk minimization

FIM Fisher information matrix

GPU graphics processing unit

GP Gaussian process

GPT generative pre-trained transformers

IB information bottleneck

ID in-distribution

IoU intersection over union

KL Kullback-Leibler divergence
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128 acronyms and notations

LLM large language model

LMC linear mode connectivity

LP linear probing

MA moving average

MI mutual information

MLP multi-layer perceptron

ML machine learning

MMD maximum mean discrepancy

MNI minimum necessary information

MORL multi-objective reinforcement learning

MSA memory split advantage

MSDA mixed sample data augmentation

MSE mean-squared error

NLLc calibrated negative log-likelihood

NLP natural language processing

NTK neural tangent kernel

OOD out-of-distribution

PCS Pareto coverage set

PF Pareto front

QA question answering

RGB red green blue

RKHS reproducing kernel Hilbert space

RLAIF reinforcement learning from AI feedback

RLHF reinforcement learning from human feedback

RL reinforcement learning

ReLU rectified linear unit

SAM sharpness-aware minimization

SGD stochastic gradient descent

sota state-of-the-art

TS temperature scaling

VG visual grounding

VQA visual question answering

WA weight averaging

WI weight interpolation
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A.2 Notations

DNN model f parameterized with weights θ
Featurizer (encoder) Φ (or e) parameterized with weights ϕ
Classifier (dense layer) w (or d) parameterized with weights ω
Input x ∈ X
Embedding z
Label y ∈ Y
Prediction ŷ ∈ Y
Number of classes K
Number of models in ensembling M
Probability density function and measure p and P
Random variables X,Y, Z
Ratios λ, µ, κ
Train (source) domain S with distribution pS
Test (target) domain T with distribution pT
Training dataset DS = {xn, yn}nS

n=1

Training configuration c
Learning procedure lS = {DS , c}
Loss function ℓ : Y2 → R+
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S O C I E TA L I M PA C T S

This thesis was crafted within a given social and political context, and we now discuss
its potential societal impact.

Sustainability. Proposing WA as an alternative to ensembling is a step towards more
sustainable DL. By reducing the computational cost at inference, we may diminish the
carbon footprint of large DNNs. However, the potential issue is that this might lead to a
“rebound effect” where the efficiency gain enables the use of even larger models.

Decentralization. We also promote the updatable machine learning paradigm [Raf23],
which facilitates “the collaborative creation of increasingly sophisticated AI systems”
[Ram+23a]. As discussed in Section 7.2.3, this paradigm may further encourage the de-
velopment of open-source models, potentially leading to the creation of more responsible
and reliable AI systems that can adapt and learn in a constantly changing environment.
This could help networks represent a more diverse range of opinions (as discussed in
Chapter 6) by mitigating the “tyranny of the crowdworker” [Kir+23], where models are
“tailored to meet the expectations of [...] a small number of crowdworkers primarily
based in the US, with little to no representation of broader human cultures, geographies,
or languages” [Kir+23], and more generally the cultural hegemony of a few individuals
[Dur+23].

Privacy and fairness. The parallelization of ensembling approaches is compatible with
federated learning scenarios [McM+17], where data must remain private. Additionally, by
improving generalization, our methods can mitigate the impact of subpopulation shift.

Transparency. In DL, decisions made during the training of models shift the respon-
sibility from the problem stakeholders to the system engineers, who need to anticipate
the impacts of their choices. We demonstrated that combining multiple models offers
an additional level of flexibility: by selecting the weighting coefficients a posteriori, we
can improve the transparency [Gab+21] of AI systems, and facilitate regulation by an
external non-technical authority. This may prove crucial to ensure the development of
fair, unbiased, and inclusive [Aba+16] AIs. This could facilitate tailored generations to
minorities by model personalization [Sal+23], but also pause risks of echo chambers and
bias reinforcement, as discussed in [Kir+23] and Section 6.4.
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132 societal impacts

Sociological analogy. More generally, we showed that the optimal diversity-accuracy
trade-off was obtained with large diversity in DL. By analogy, this thesis promotes more
diversity in our society [Mul16]: ideas should be shared and debated among members
reflecting the diversity of the society’s various components and backgrounds. Actually,
in social science, this insight is known as the the Hong-Page theorem [Hon+04]: a group
of low-ability, cognitively diverse people can outperform a more uniform group of high-
ability experts to solve problems. Academia especially needs this diversity to promote
trust in research [Sie+18], to improve quality of the findings [Swa+19], productivity of the
teams [Vas+15] and even schooling’s impact [Bow13].
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C.1 Proofs for E N S E M B L I N G

We detail the proofs for the theoretical arguments in Chapter 2.

• Appendix C.1.1 proves the link between variance and diversity shift (Proposi-
tion 2.1).

• Appendix C.1.2 proves the link between bias and correlation shift (Proposition 2.2).

• Appendix C.1.3 proves the bias-variance-covariance decomposition for ensembling
(Proposition 2.3).

C.1.1 Variance and diversity shift Proposition 2.1

We prove the link between variance and diversity shift. Our proof builds upon the sim-
ilarity between DNNs and GPs in the interpolating regime, detailed in Appendix C.1.1.1.
We discuss our simplifying Assumption 2.2 in Appendix C.1.1.2. We present our final
proof in Appendix C.1.1.3.

C.1.1.1 Deep neural networks as GPs Assumption 2.1

We fix DS ,DT and denote XDS
= {xS}(xS ,yS)∈DS

, XDT
= {xT }(xT ,yT )∈DT

their respec-
tive input supports. We fix the initialization of the network. lS encapsulates all other
sources of randomness.
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Lemma C.1 (Inspired from [Ras03]). Given a NN f(·, θ(lS)) under Assumption 2.1, we denote
K its NTK and K(XDS

, XDS
) = (K (xS , x

′
S))xS ,x

′
S∈X

2
DS

∈ RnS×nS . Given x ∈ X , we denote
K(x,XDS

) = [K (x, xS)]xS∈XDS
∈ RnS . Then:

var(x) = K(x, x)−K(x,XDS
)K(XDS

, XDS
)−1K(x,XDS

)⊺. (C.1)

Proof. Under Assumption 2.1, DNNs are equivalent to GPs. var(x) is the formula of the
variance of the GP posterior given by Eq. (2.26) in [Ras03], when conditioned on DS .
This formula thus also applies to the variance f(·, θ(lS)) when lS varies (at fixed DS and
initialization).

C.1.1.2 Discussion of the same norm and low similarity Assumption 2.2

Lemma C.1 shows that the variance only depends on the input distributions without
involving the label distributions. This formula highlights that the variance is related
to shifts in input similarities (measured by K) between XDS

and XDT
. Yet, a more re-

fined analysis of the variance requires additional assumptions, in particular to obtain
a closed-form expression of K(XDS

, XDS
)−1. Assumption 2.2 is useful because then

K(XDS
, XDS

) is diagonally dominant and can be approximately inverted (see full proof
in Appendix C.1.1.3).

The first part of Assumption 2.2 assumes that ∃λS such that all training inputs xS ∈ XDS

verify K(xS , xS) = λS . Note that this equality is standard in some kernel machine
algorithms [Ah-10; Gho+21; Ren05] and is usually achieved by replacing K(x, x′) by
λS

K(x,x′)√
K(x,x)

√
K(x′,x′)

,∀(x, x′) ∈ (XDS
∪XDT

)2. In the NTK literature, this equality is

achieved without changing the kernel by normalizing the samples of XDS
such that

they lie on the hypersphere; this input preprocessing was used in [Lee+17]. This is the-
oretically based: for example, the NTK K(x, x′) for an architecture with an initial fully
connected layer only depends on ∥x∥, ∥x′∥, ⟨x, x′⟩ [Yan+19a]. Thus in the case where all
samples from XDS

are preprocessed to have the same norm, the value of K(xS , xS) does
not depend on xS ∈ XDS

; we denote λS the corresponding value.

The second part of Assumption 2.2 states that ∃0 ≤ ϵ ≪ λS , s.t. ∀xS , x′S ∈ X2
DS

, xS ̸=
x′S ⇒ |K(xS , x

′
S)| ≤ ϵ, i.e., that training samples are dissimilar and do not interact. This

diagonal structure of the NTK [Jac+18], with diagonal values larger than non-diagonal
ones, is consistent with empirical observations from [Sel+22] at initialization. Theoretically,
this is reasonable if K is close to the RBF kernel Kh (x, x

′) = exp(−∥x− x′∥22 /h) where h

would be the bandwidth: in this case, Assumption 2.2 is satisfied when training inputs
are distant in pixel space.

We now provide an analysis of the variance where the diagonal assumption is relaxed.
Specifically, we provide the sketch for proving an upper-bound of the variance when the
NTK has a block-diagonal structure. This is indeed closer to the empirical observations
in [Sel+22] at the end of training, consistently with the local elasticity property of NNs
[He+20]. We then consider the dataset dS′ ⊂ DS made of one sample per block, to which
Assumption 2.2 applies. As decreasing the size of a training dataset empirically reduces
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variance [Bra+99], the variance of f trained on DS is upper-bounded by the variance of f
trained on dS′ ; the latter is given by applying Proposition 2.1 to dS′ . We believe that the
proper formulation of this idea is beyond the scope of this proof and best left for future
theoretical work.

C.1.1.3 Expression of OOD variance

We now prove Proposition 2.1 under Assumptions 2.1 and 2.2.

Proof. Our proof is original and is based on the posterior form of GPs in Lemma C.1.
Given DS , we recall Equation (C.1) that states ∀x ∈ X :

var(x) = K(x, x)−K(x,XDS
)K(XDS

, XDS
)−1K(x,XDS

)⊺.

Denoting B = K(XDS
, XDS

)−1 with symmetric coefficients bi,j = bj,i, then

var(x) = K(x, x)−
∑

1≤i≤nS
1≤j≤nS

bi,jK(x, xiS)K(x, xjS). (C.2)

Assumption 2.2 states that K(XDS
, XDS

) = A + H where A = λSInS and H =

(hij)1≤i≤nS
1≤j≤nS

with hi,i = 0 and maxi,j |hi,j | ≤ ϵ.

We fix xT ∈ XDT
and determine the form of B−1 in two cases: ϵ = 0 and ϵ ̸= 0.

Case when ϵ = 0 We first derive a simplified result, when ϵ = 0.

Then, bi,i = 1
λS

and bi,j = 0 s.t.

var(xT ) = K(xT , xT )−
∑

xS∈XDS

K(xT , xS)
2

λS
= K(x, x)− nS

λS
ExS∈XDS

[K2(x, xS)]

We can then write:

ExT∈XDT
[var(xT )] = ExT∈XDT

[K(xT , xT )]−
nS

λS
ExT∈XDT

[ExS∈XDS
[K2(xT , xS)]]

ExT∈XDT
[var(xT )] = λT −

nS

λS
ExS∈XDS

,xT∈XDT
[K2(xT , xS)].

We now relate the second term on the r.h.s. to a MMD distance. As K is a kernel, K2 is a
kernel and its MMD between XDS

and XDT
is per [Gre+12]:

MMD2(XDS
, XDT

) =ExS ̸=x′
S∈X

2
DS

[K2(xS , x
′
S)] + ExT ̸=x′

T∈X2
DT

[K2(xT , x
′
T )]

− 2ExS∈XDS
,xT∈XDT

[K2(xT , xS)].



136 proofs

Finally, because ϵ = 0, ExS ̸=x′
S∈X

2
DS

K2 (xS , x
′
S) = 0 s.t.

ExT∈XDT
[var(xT )] =

nS

2λS
MMD2(XDS

, XDT
) + λT

− nS

2λS

(
ExT ̸=x′

T∈X2
DT

K2
(
xT , x

′
T

)
+ ExS ̸=x′

S∈X
2
DS

K2
(
xS , x

′
S

) )

=
nS

2λS
MMD2(XDS

, XDT
) + λT −

nS

2λS
ExT ̸=x′

T∈X2
DT

K2
(
xT , x

′
T

)

=
nS

2λS
MMD2(XDS

, XDT
) + λT −

nS

2λS
βT .

We recover the same expression with a O(ϵ) in the general setting where ϵ ̸= 0.

Case when ϵ ̸= 0 We denote I :

{
GLnS (R) → GLnS (R)

A 7→ A−1 the inversion function

defined on GLnS (R), the set of invertible matrices ofMnS (R).
The function I is differentiable [Mag+19] in all A ∈ GLnS (R) with its differentiate given

by the linear application dIA :

{
MnS (R) →MnS (R)

H 7→ −A−1HA−1 . Therefore, we can perform

a Taylor expansion of I at the first order at A:

I(A+H) = I(A) + dIA(H) + o(∥H∥),
(A+H)−1 = A−1 −A−1HA−1 + o(∥H∥).

where ∥H∥ ≤ nSϵ = O(ϵ). Thus,

(λSInS +H)−1 = (λSInS )
−1 − (λSInS )

−1H(λSInS )
−1 +O(ϵ) = 1

λS
InS −

1

λ2
S

H +O(ϵ),

∀i ∈ J1, nSK, bii =
1

λS
− 1

λ2
S

hi,i + o(ϵ) =
1

λS
+O(ϵ),

∀i ̸= j ∈ J1, nSK, bij = −
1

λ2
S

hi,j + o(ϵ) = O(ϵ).

Therefore, when ϵ is small, Equation (C.2) can be developed into:

var(xT ) = K(xT , xT )−
∑

xS∈XDS

(
1

λS
+O(ϵ))K(xT , xS)

2 +O(ϵ)

= K(xT , xT )−
nS

λS
ExS∈XDS

[K(xT , xS)
2] +O(ϵ)

Following the derivation for the case ϵ = 0, and remarking that under Assumption 2.2 we
have ExS ̸=x′

S∈X
2
DS

K2 (xS , x
′
S) = O(ϵ2), yields:

ExT∈XDT
[var(xT )] =

nS

2λS
MMD2(XDS

, XDT
) + λT −

nS

2λS
βT +O(ϵ).
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C.1.2 Bias and correlation shift (and support mismatch) Proposition 2.2

We first present in Appendix C.1.2.1 a decomposition of the bias without any assump-
tions, and then prove our results with the simplifying assumption Assumption 2.3.

C.1.2.1 OOD bias

Proposition (OOD bias). Denoting f̄S (x) = ElS [f (x, θ (lS))], the bias is:

E(x,y)∼pT [bias
2(x, y)] =

∫

XT∩XS

(fT (x)− fS (x))2 pT (x)dx (Correlation shift)

+

∫

XT∩XS

(
fS(x)− f̄S (x)

)2
pT (x)dx (Weighted ID bias)

+

∫

XT∩XS

2 (fT (x)− fS (x))
(
fS (x)− f̄S (x)

)
pT (x)dx (Interaction ID bias and corr. shift)

+

∫

XT \XS

(
fT (x)− f̄S (x)

)2
pT (x)dx. (Support mismatch)

Proof. This proof is original and based on splitting the OOD bias in and out of XS :

E(x,y)∼pT [bias
2(x, y)] = E(x,y)∼pT

(
y − f̄S (x)

)2

=

∫

XT

(
fT (x)− f̄S (x)

)2
pT (x)dx

=

∫

XT∩XS

(
fT (x)− f̄S (x)

)2
pT (x)dx+

∫

XT \XS

(
fT (x)− f̄S (x)

)2
pT (x)dx.

To decompose the first term, we write ∀x ∈ XS , −f̄S (x) = −fS (x) +
(
fS(x)− f̄S (x)

)
.

∫

XT∩XS

(
fT (x)− f̄S (x)

)2
pT (x)dx =

∫

XT∩XS

(
(fT (x)− fS (x)) +

(
fS(x)− f̄S (x)

))2
pT (x)dx

=

∫

XT∩XS

(fT (x)− fS (x))2 pT (x)dx+

∫

XT∩XS

(
fS(x)− f̄S (x)

)2
pT (x)dx

+

∫

XT∩XS

2 (fT (x)− fS (x))
(
fS (x)− f̄S (x)

)
pT (x)dx.

The four terms can be qualitatively analyzed:

• The first term measures differences between train and test labelling function. By
rewriting ∀x ∈ XT ∩XS , fT (x) = EpT [Y |X = x] and fS(x) = EpS [Y |X = x], this term
measures whether conditional distributions differ. This recovers a similar expression
to the correlation shift formula from [Ye+22].
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• The second term is exactly the ID bias, but weighted by the marginal distribution
pT (X).

• The third term
∫
XT∩XS

2 (fT (x)− fS (x))
(
fS (x)− f̄S (x)

)
pT (x)dx measures to

what extent the ID bias compensates the correlation shift. It can be negative if
(by chance) the ID bias goes in opposite direction to the correlation shift.

• The last term measures support mismatch between test and train marginal distribu-
tions. It lead to the “No free lunch for learning representations for DG” in [Rua+22].
The error is irreducible because “outside of the source domain, the label distribution
is unconstrained”: “for any domain which gives some probability mass on an ex-
ample that has not been seen during training, then all [. . .] labels for that example”
are possible.

C.1.2.2 OOD bias when small ID bias

We now prove Proposition 2.2 under Assumption 2.3.

Proof. We simplify the second and third terms from Appendix C.1.2.1 under Assump-
tion 2.3.

The second term is
∫
XT∩XS

(
fS (x)− f̄S (x)

)2
pT (x)dx. Under Assumption 2.3, |fS (x)−

f̄S (x) | ≤ ϵ. Thus the second term is O(ϵ2).
The third term is

∫
XT∩XS

2 (fT (x)− fS (x))
(
fS (x)− f̄S (x)

)
pT (x)dx. As fT − fS is

bounded on XS ∩ XT , ∃K ≥ 0 such that ∀x ∈ XS ,

| (fT (x)− fS(x))
(
fS(x)− f̄S (x)

)
pT (x)| ≤ K

∣∣fS(x)− f̄S (x)
∣∣ pT (x) = O(ϵ)pT (x).

Thus the third term is O(ϵ).
Finally, note that we cannot say anything about f̄S (x) when x ∈ XT \ XS .

To prove the previous equality, we needed a bounded difference between labeling
functions fT − fS on XT ∩ XS . We relax this bounded assumption to obtain an inequality
in the following Proposition C.1.

Proposition C.1 (OOD bias when small ID bias without bounded difference between
labeling functions). Under Assumption 2.3,

E(x,y)∼pT [bias
2(x, y)] ≤ 2× Correlation shift + Support mismatch +O(ϵ2) (C.3)
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Proof. We follow the same proof as in Appendix C.1.2.1, except that we now use: (a+b)2 ≤
2(a2 + b2). Then,
∫

XT∩XS

(
fT (x)− f̄S (x)

)2
pT (x)dx =

∫

XT∩XS

(
(fT (x)− fS (x)) +

(
fS(x)− f̄S (x)

))2
pT (x)dx

≤ 2×
∫

XT∩XS

(fT (x)− fS (x))2 +
(
fS(x)− f̄S (x)

)2
pT (x)dx

≤ 2×
∫

XT∩XS

(fT (x)− fS (x))2 pT (x)dx+ 2×
∫

XT∩XS

ϵ2pT (x)dx

≤ 2×
∫

XT∩XS

(fT (x)− fS (x))2 pT (x)dx+O(ϵ2)

C.1.3 Proof of the bias-variance-covariance decomposition Proposition 2.3

Proof. This proof recovers the bias-variance-covariance decomposition from [Ued+96;
Bro+05a] of ensembling, with i.d. learning procedures.

With f̄S (x) = ElS [f (x, θ (lS))], we recall the bias-variance decomposition [Koh+96]
(Equation (BV)):

ElSET (θ(lS)) = E(x,y)∼pT [bias
2(x, y) + var(x)],

where bias(x, y) = Bias{f |(x, y)} = y − f̄S (x) ,

and var(x) = Var{f |x} = ElS

[(
f(x, θ(lS))− f̄S (x)

)2]
.

Using fENS = fENS(·, {θ(l(i)S )}Mi=1) =
1
M

∑M
i=1 f(·, θ(l

(i)
S )) in this decomposition yields,

ELM
S
ET ({θ(l(i)S )}Mi=1) = Ex∼pT

[
Bias {fENS | (x, y)}2 +Var {fENS | x}

]
. (C.4)

As fENS depends on LM
S , we extend the bias into:

Bias {fENS | (x, y)} = y − ELM
S

[
1

M

M∑

i=1

f(x, θ(l
(i)
S ))

]
= y − 1

M

M∑

i=1

E
l
(i)
S

[
f(x, θ(l

(i)
S ))

]

Under i.d. LM
S = {l(i)S }Mi=1,

1

M

M∑

i=1

E
l
(i)
S

[
y − f(x, θ(l

(i)
S ))

]
= ElS [y − f(x, θ(lS))] = Bias{f |(x, y)}.

Thus the bias of ENS is the same as for a single member of the ensemble.
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Regarding the variance:

Var {fENS | x} = ELM
S



(

1

M

M∑

i=1

f(x, θ(l
(i)
S ))− ELM

S

[
1

M

M∑

i=1

f(x, θ(l
(i)
S ))

])2

 .

Under i.d. LM
S = {l(i)S }Mi=1,

Var {fENS | x} =
1

M2

M∑

i=1

ElS

[
(f(x, θ(lS))− ElS [f(x, θ(lS))])

2
]
+

1

M2

∑

i

∑

i′ ̸=i

ElS ,l
′
S

[
(f(x, θ(lS))− ElS [f(x, θ(lS))])

(
f(x, θ(l′S))− El′S

[
f(x, θ(l′S))

])]

=
1

M
ElS

[
(f(x, θ(lS))− ElS [f(x, θ(lS))])

2
]
+

M − 1

M
ElS ,l

′
S

[
(f(x, θ(lS))− ElS [f(x, θ(lS))])

(
f(x, θ(l′S))− El′S

[
f(x, θ(l′S))

])]

=
1

M
var (x) +

(
1− 1

M

)
cov (x) .

The variance is split into the variance of a single member divided by M and a new
covariance.
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C.2 Theoretical insights for D I C E

C.2.1 KL between Gaussians

The Kullback-Leibler divergence (KL) divergence [Kul59] between two Gaussian distri-
butions takes a particularly simple form:

DKL(e(z|x)∥b(z|y)) = log
bσ(y)

eσ(x)
+

eσ(x)2 + (eµ(x)− bµ(y))2

2bσ(y)2
− 1

2
(Gaussian param.)

=
1

2
[(1 + eσ(x)2 − log(eσ(x)2))︸ ︷︷ ︸

Variance

+(eµ(x)− bµ(y))2︸ ︷︷ ︸
Mean

]. (bσ(y) = 1)

The variance component forces the predicted variance eσ(x) to be close to bσ(y) = 1.
The mean component forces the class-embedding bµ(y) to converge to the average of the
different elements in its class.

C.2.2 Difference between VCEB and VIB

In [Fis20], CEB is variationally upper bounded by VCEB. We detail the computations:

CEBβceb(Z) =
1

βceb
I(X;Z|Y )− I(Y ;Z) (Definition)

=
1

βceb
[I(X,Y ;Z)− I(Y ;Z)]− I(Y ;Z) (Chain rule)

=
1

βceb
[I(X;Z)− I(Y ;Z)]− I(Y ;Z) (Markov assumptions)

=
1

βceb
[−H(Z|X) +H(Z|Y )]− [H(Y )−H(Y |Z)] (MI as diff. of 2 ent.)

≤ 1

βceb
[−H(Z|X) +H(Z|Y )]− [−H(Y |Z)] (Non-negativity of ent.)

=

∫
{ 1

βceb
log

e(z|x)
p(z|y) − log p(y|z)}p(x, y, z)∂x∂y∂z (Definition of ent.)

≤
∫

{ 1

βceb
log

e(z|x)
b(z|y) − log d(y|z)}p(x, y)e(z|x)∂x∂y∂z (Variational approx.)

≈ 1

ns

ns∑
n=1

∫
{ 1

βceb
log

e(z|xn)

b(z|yn)
− log d(yn|z)}e(z|xn)∂z (Empirical data distrib.)

≈ VCEBβceb(θ = {e, b, d}), (Reparameterization trick)

where, by introducing ϵ such as z = e(x, ϵ),

VCEBβceb(θ = {e, b, d}) = 1

ns

ns∑
n=1

{ 1

βceb
DKL(e(z|xn)∥b(z|yn))− Eϵ log d(yn|e(xn, ϵ)}.

As a reminder, [Ale+17] upper bounded: IBβib
(Z) = 1

βib
I(X;Z)− I(Y ;Z) by:

VIBβib
(θ = {e, b, d}) = 1

ns

ns∑

n=1

{ 1

βib
DKL(e(z|xn)∥b(z))− Eϵ log d(yn|e(xn, ϵ)}. (C.5)
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In VIB, all features distribution e(z|x) are moved towards the same class-agnostic distri-
bution b(z) ∼ N(µ, σ), independently of y. In VCEB, e(z|x) are moved towards the class
conditional marginal bµ(y) ∼ N(bµ(y), bσ(y)). This is the unique difference between VIB
and VCEB. VIB leads to a looser approximation with more bias than VCEB.
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C.3 Proof for D I V E R S E W E I G H T AV E R AG I N G

Below we detail the (simple) proof of Lemma 4.1, validating the similarity between
weight averaging and functional ensembling.

Proof. Functional approximation. With a Taylor expansion at the first order of the models’
predictions w.r.t. parameters θ:

fθi = fWA +∇f⊺
WA∆i +O

(
∥∆i∥22

)

fENS − fWA =
1

M

M∑

i=1

(
∇f⊺

WA∆i +O
(
∥∆i∥22

))

Therefore, because
∑M

i=1∆i = 0,

fENS − fWA = O
(
∆2
)

where ∆ =
M

max
i=1
∥∆i∥2 . (C.6)

Loss approximation. With a Taylor expansion at the zeroth order of the loss w.r.t. its
first input and injecting Equation (C.6):

ℓ (fENS(x); y) = ℓ (fWA(x); y) +O (∥fENS(x)− fWA(x)∥2)
ℓ (fENS(x); y) = ℓ (fWA(x); y) +O

(
∆2
)
.
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C.4 Proofs for R E WA R D E D S O U P S

In Chapter 6, we proved the Pareto optimality for Hessians proportional to the identity.
We now consider the more complex case with the relaxed Assumption C.1. For simplicity,
we only consider N = 2 rewards R1 and R2.

Assumption C.1 (Diagonal Hessians). The rewards are quadratic, with Hessians diagonal
negative definite. Specifically, we can write for i ∈ {1, 2}:

∀θ = (θ1, ..., θd) ∈ Θ, Ri(θ) = Ri(θi)−
d∑

j=1

ηji (θ
j − θji )

2, (C.7)

where (η1i , ...ηdi ) ∈ {R∗
+}d and θi = (θ1i , ..., θdi ) is the global maximum for reward Ri.

Remark C.1. This diagonal Assumption C.1 of the Hessian is common: for example in opti-
mization [LeC+12; Kin+15], to prune networks [LeC+90] or in out-of-distribution generalization
[Ram+22a]. This strong assumption is supported by the empirical observation [Bec+88] that Hes-
sians are diagonally dominant, in particular at the end of training. Also, we note that our findings
remain valid assuming only that the Hessians are co-diagonalizable.

Lemma C.2. We consider the user’s reward Rµ̂ = (1− µ̂)×R1 + µ̂×R2 with µ̂ ∈ [0, 1], and

∆Rµ̂ = max
θ∈Θ

Rµ̂(θ)− max
λ∈[0,1]

Rµ̂ ((1− λ) · θ1 + λ · θ2) . (C.8)

∆Rµ̂ corresponds to the difference in terms of Rµ̂ between the global maximum and the maximum
reachable by weight interpolation through rewarded soups (with a single interpolating coefficient
for all dimensions). Then, under Assumption C.1, we have:

∆Rµ̂ ≤
µ̂2(1− µ̂)2(M∆1 −∆2)(M∆2 −∆1)

(µ̂(1− µ̂)(M − 1)2 +M) ((1− µ̂)∆1 + µ̂∆2)
, (C.9)

where M = maxj∈{1,...,d}max

(
ηj1
ηj2
,
ηj2
ηj1

)
is the maximum of eigenvalues ratio, ∆1 = R1(θ1)−

R1(θ2) and ∆2 = R2(θ2)−R2(θ1).

When ∆1 = ∆2, the bound simplifies into:

∆Rµ̂ ≤
µ̂2(1− µ̂)2(M − 1)2

µ̂(1− µ̂)(M − 1)2 +M
∆1 (C.10)

Furthermore, when the Hessians are equal, then M = 1 and ∆Rµ̂ = 0: RS is optimal .

Proof. This novel proof is in three steps. First, we find θ̂ maximizing Rµ̂(θ) for θ on the
full set of weights Θ. Second, we find λ̄ maximizing Rµ̂ ((1− λ) · θ1 + λ · θ2) for λ ∈ [0, 1]

and thus defining the best interpolation between the expert weights. Finally, we bound
∆Rµ̂, the differences between their rewards, by applying the Bhatia-Davis inequality.
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First step. Let’s first find the maximum of Rµ̂ on Θ. Denoting S = (1− µ̂)×R1(θ1) +

µ̂×R2(θ2), we have for all θ ∈ Θ:

Rµ̂(θ) = S −
d∑

j=1

(
(1− µ̂)ηj1

(
θj − θj1

)2
+ µ̂ηj2

(
θj − θj2

)2)
(C.11)

Since Rµ̂ is a sum of concave quadratic functions, it has a unique global maximum

reached at a point we note θ̂ =
(
θ̂1, ..., θ̂d

)
. The global maximum can be computed by

differentiating Rµ̂ with respect to each variable θj , which gives:

θ̂j =
(
1− λ̂j

)
· θj1 + λ̂j · θj2

where the interpolating coefficients per dimension λ̂j are defined for j ∈ {1, ..., d} as:

λ̂j =
µ̂ηj2

(1− µ̂)ηj1 + µ̂ηj2
∈ [0, 1]. (C.12)

Second step. With λ ∈ [0, 1] and θ = (1 − λ) · θ1 + λ · θ2, we can write Rµ̂(θ) as a
function of λ:

Rµ̂(θ) = S −
d∑

j=1

((
(1− µ̂) ηj1 + µ̂ηj2

)(
λ− λ̂j

)2
+

µ̂(1− µ̂)ηj1η
j
2

(1− µ̂)ηj1 + µ̂ηj2

)(
θj1 − θj2

)2

= Rµ̂(θ̂)−
d∑

j=1

pj

(
λ− λ̂j

)2
(C.13)

where pj is defined as pj =
(
(1− µ̂) ηj1 + µ̂ηj2

)(
θj1 − θj2

)2
.

From Equation (C.13), we can compute the maximum reward obtainable for weight av-
eraging maxλ∈[0,1]Rµ̂ (( 1−λ )·θ1 + λ · θ2). Since the function λ 7→ Rµ̂ ((1− λ) · θ1 + λ · θ2)
is a concave quadratic function, there is a unique value λ̄ maximizing Rµ̂ equal to

λ̄ =

∑d
j=1 pj λ̂

j

∑d
j=1 pj

. (C.14)

Since all pj are positive and all λ̂j are between 0 and 1, λ̄ is also between 0 and 1.
Therefore, Rµ̂

(
(1− λ̄) · θ1 + λ̄ · θ2

)
is indeed the maximum reward for rewarded soups.
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Third step. Applying Equation (C.13) to λ̄ gives:

∆Rµ̂ = Rµ̂(θ̂)−Rµ̂

(
(1− λ̄) · θ1 + λ̄ · θ2

)
(C.15)

=

d∑

j=1

pj

(
λ̄− λ̂j

)2
(C.16)

=




d∑

j=1

pj∑n
i=1 pi

(
λ̄− λ̂j

)2





n∑

j=1

pj


 (C.17)

The second term in Equation (C.17) can be simplified as:

d∑

j=1

pj = (1− µ̂)∆1 + µ̂∆2. (C.18)

The core component of this proof is the upper bounding of the first term in Equa-
tion (C.17). The key idea is to recognize the variance of a discrete random variable Λ with
P(Λ = λ̂i) =

pi∑n
j=1 pj

; then, λ̄ from Equation (C.14) is actually the expectation of Λ. Then,
we can apply the Bhatia-Davis inequality, as recalled in Equation (C.19), on the variance
of a bounded random variable a ≤ Λ ≤ b:

V ar(Λ) ≤ (b− E(Λ)) (E(Λ)− a) (C.19)

Therefore Equation (C.17) is bounded by:

∆Rµ̂ ≤
(
max
1≤j≤d

λ̂j − λ̄

)(
λ̄− min

1≤j≤d
λ̂j

)
((1− µ̂)∆1 + µ̂∆2) . (C.20)

Now, we bound the variables λ̂j , since 1/M ≤ ηj1/η
j
2 ≤M . Then for all j we have:

µ̂

(1− µ̂)M + µ̂
≤ λ̂j ≤ µ̂M

(1− µ̂) + µ̂M
, (C.21)

and thus:

∆Rµ̂ ≤
(

µ̂M

1 + µ̂(M − 1)
− λ̄

)(
λ̄− µ̂

M − µ̂(M − 1)

)
((1− µ̂)∆1 + µ̂∆2) . (C.22)

Finally, noting that ∆i =
∑d

j=1 η
j
i

(
θj2 − θj1

)2
, we deduce from Equation (C.14) that λ̄ =

µ̂∆2

(1−µ̂)∆1+µ̂∆2
. Replacing this in the previous Equation (C.22) gives the final Equation (C.9),

concluding the proof.

Remark C.2. As a final remark, please note that the suboptimality of RS comes from the need of
having one single interpolating coefficient λ̄ for all d parameters (θ1, ..., θd) of the network. Yet,
the advanced merging operations in [Mat+22] remove this constraint, with interpolating coeffi-
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cients proportional to the eigenvalues of the Fisher matrices [Fis22], which actually approximate
the eigenvalues of the Hessian [Sch02; Tho+20]. Combining [Mat+22] and our RS is a promis-
ing research direction, the key issue being the computation of the Fisher matrices [Kun+19] for
networks with billions of parameters.

We visualize in Figure C.1 the bound given by Lemma C.2. We show that for small
values of M like M = 2, the value of Rµ̂ for RS is quite close to the global optimum. Also,
recall that RS theoretically matches this upper bound when M = 1. For larger values like
M = 10, the bound is less tight, and we note that the maximum value of Rµ̂ approaches
the constant function 1 as M →∞.

0.0 0.2 0.4 0.6 0.8 1.0

µ̂

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
µ̂

=
(1
−
µ̂

)
×
R

1
+
µ̂
×
R

2

Upper bound, M=10

Upper bound, M=2

Rewarded soups

LMC lower bound

Figure C.1. – Illustration of the bound given by Lemma C.2 under Assumption C.1. For
simplicity, we showcase the case where R1(θ1) = R2(θ2) = 1, R1(θ2) = R2(θ1) = 0, thus
∆1 = ∆2 = 1. In green, we plot the rewards obtained with rewarded soups for the optimal
λ̄, i.e., Rµ̂

(
(1− λ̄) · θ1 + λ̄ · θ2

)
, whose value is independent of M in this case. In blues, we plot

the maximum value of Rµ̂ given by Equation (C.10) in Lemma C.2, for M = 2 and M = 10. For
reference, we also plot the values for the lower bound in the LMC Hypothesis 6.1, i.e., equal to
(1− µ̂)(1− λ̄)R1(θ1) + µ̂λ̄R2(θ2). As RS outperforms this lower bound, it validates Hypothesis 6.1
in this case.
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D.1 Introduction

In deep learning (DL), to improve robustness [Hen+19a; Ova+19] or to win Kaggle
competitions, DNNs usually pair up with two practical strategies.

The first strategy is data augmentation (DA), reducing overfitting by diversifying the
training samples [Lop+20]: in particular, recent mixed sample data augmentation (MSDA)
create artificial samples by mixing multiple inputs and their labels proportionally to a
ratio λ. The seminal Mixup [Zha+18a] linearly interpolates pixels: binary masking MSDAs
[Fre+20; Har+20; Kim+20] such as CutMix [Yun+19] have since diversified mixed samples
by pasting patches from one image onto another.

The second strategy is ensembling (ENS), the main topic of this thesis. This chapter
follows the recent multi-input multi-output (MIMO) [Hav+21; Sof+20], that approximates
traditional functional ensembling of models by fitting M independent subnetworks inside
a single base network: this is possible as large networks only leverage a subset of their
weights [Fra+19]. Specifically, we introduce MixMo, a new generalized framework for
learning deep subnetworks. As in MIMO, we consider M (input, label) pairs at the same
time in training: {(xi, yi)}0≤i<M , as shown on Figure D.1 with M = 2. The M inputs
are encoded by M separate convolutional layers {ci}0≤i<M into a shared latent space
before being mixed. The representation is then fed to the core network, which finally
branches out into M dense layers {di}0≤i<M . The main idea during training to prevent
homogenization is that each subnetwork learns to classify only one of the multiple inputs
simultaneously provided. Diverse subnetworks naturally emerge as di learns to classify
yi from input xi. At inference, the same image is repeated M times: we obtain ensembling
“for free” by averaging M predictions.

Our key originality lies in the multi-input mixing block; indeed, the question of how to
best mix these multiple inputs has not been studied so far. Should the merging be a basic
summation, we would recover MIMO [Hav+21]. Our main intuition is simple: we see
summing as a balanced and restrictive form of Mixup [Zha+18a] where λ = 1

M . Then
by analogy, we leverage the literature in MSDA to propose novel mixing strategies. In
particular, we show that binary masking methods—particularly with rectangular patches
from CutMix[Yun+19]—enhances results by making subnetworks stronger and more
diverse. We thus create a new Cut-MixMo variant inspired by CutMix, and illustrated
in Figure D.1: a patch of features from the first input is pasted into the features from
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Figure D.1. – MixMo framework. We embed M = 2 inputs into a shared space with convolutional
layers (c1, c2), mix them, pass the embedding through further layers and output 2 predictions
via dense layers (d1, d2). The key point of our MixMo is the mixing block. Mixing with patches
performs better than basic summing: 85.40% vs. 83.06% (MIMO [Hav+21]) on CIFAR-100 with
WRN-28-10.

the second input. Overall, we replace the suboptimal summing operation hidden in
MIMO with an improved mixing block based on patching. Our asymmetrical mixing also
raises new questions regarding information flow in the network’s features; we tackle the
imbalance between the multiple classification training tasks via a new weighting scheme.

1. We propose a general framework, MixMo, connecting two successful fields: mix-
ing samples data augmentations & multi-input multi-output ensembling (Ap-
pendix D.3.1).

2. We identify the appropriate mixing block to best tackle the diversity/individual
accuracy trade-off in subnetworks: our easy to implement Cut-MixMo benefits from
the synergy between CutMix and ensembling (Appendix D.3.2).

3. We design a new weighting of the loss components to properly leverage the asym-
metrical inputs mixing (Appendix D.3.3).

4. We improve performances for image classification on CIFAR-100 and Tiny ImageNet
datasets (Appendix D.4). As exhibited by Figure D.2, Cut-MixMo outperforms Cut-
Mix, MIMO and deep ensembling (DE), at (almost) the same inference cost as a
single network.

The work in this chapter has led to the publication of the following paper: Alexandre
Ramé, Remy Sun, and Matthieu Cord. “MixMo: Mixing Multiple Inputs for Multiple
Outputs via Deep Subnetworks”. In: ICCV. 2021.
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Figure D.2. – Main MixMo results on CIFAR-100 with WRN-28-w. Our Cut-MixMo variant (patch
mixing and M = 2) surpasses CutMix and deep ensembles (with half the parameters) by leverag-
ing over-parameterization in wide networks.

D.2 Related work

Data augmentation. DNNs are known to memorize the training data [Zha+17] and
make overconfident predictions [Guo+17] to the detriment of generalization on new test
examples. Data augmentations (DA) inflate the training dataset’s size by creating artificial
samples from available labeled data. Beyond slight perturbations (e.g., rotation), recent
works [Cub+20; Hen+19b; DeV+17b] apply stronger transformations [He+19]. Mixed sam-
ple data augmentation (MSDA) recently expanded the notion of DA. From pairs of labeled
samples {(xi, yi), (xk, yk)}, they create virtual samples: (mx(xi, xk, λ), λyi + (1− λ)yk)

where λ ∼ Beta(α, α). [Lia+18] shows that mixing the targets differently than this linear in-
terpolation may cause underfitting and unstable learning. Then, approaches mainly focus
on developing the most effective input mixing mx. In [Ino18; Tok+18a; Tok+18b; Zha+18a],
mx performs a simple linear interpolation between pixels: e.g in Mixup [Zha+18a],
mx(xi, xk, λ) = λxi + (1− λ)xk. Then, CutMix [Yun+19] draws from Mixup and CutOut
[DeV+17b] by pasting a patch from xk onto xi: mx(xi, xk, λ) = 1m ⊙ xi + (1− 1m)⊙ xk,

where ⊙ represents the element-wise product and 1m a binary mask with average value λ.
CutMix randomly samples squares, which often leads to rectangular masks due to bound-
ary effects. Such non-linear binary masking improves generalization [Sum+19; Tak+20] by
creating new images with usually disjoint patches [Har+20]. Finally, in addition to Mani-
fold Mixup [Ver+19], only a few works [DeV+17a; Far+20; Li+20a; Yag+19; Yun+19] have
tried to mix intermediate latent features as we do.
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Ensembling. Like [Wen+21], we explore combining DA with another standard tech-
nique in machine learning: ensembling, whose fundamental drawback is the inherent
computational and memory overhead. This chapter follows the multi-input multi-output
MIMO paper [Hav+21], which achieves ensemble almost “for free”: all of the layers except
the first convolutional and last dense layers are shared (≈ +1% #parameters).

D.3 MixMo

We first introduce the main components of our MixMo strategy, summarized in Fig-
ure D.3: we mix multiple inputs to obtain multiple outputs via subnetworks. We highlight
the key mixing block combining information from inputs, and our training loss based
on a dedicated weighting scheme. We study M = 2 subnetworks in this thesis, both for
clarity and as it empirically performs best in standard parameterization regimes.

D.3.1 General overview

We leverage a training classification dataset DS of i.i.d. pairs of associated image/label
{xi, yi}nS

i=1. We randomly sample a subset of b samples {xi, yi}i∈B that we randomly shuf-
fle via permutation π. Our training batch is {(xi, xj), (yi, yj)}i∈B,j=π(i). The loss LMixMo is
averaged over these b samples: the networks’ weights are updated through backpropaga-
tion and gradient descent.

Let’s focus on the training sample {(x0, x1), (y0, y1)}. In MixMo, both inputs are sepa-
rately encoded (see Figure D.1) into the shared latent space with two different convolutional
layers (with 3 input channels each and no bias term): x0 via c0 and x1 via c1. To recover
a strictly equivalent formulation to MIMO [Hav+21], we simply sum the two encodings:
c0(x0) + c1(x1). Indeed, MIMO merges inputs through channel-wise concatenation in
pixels: MIMO’s first convolutional layer (with 6 input channels and no bias term) hides
the summing operation in the output channels.

Explicitly highlighting the underlying mixing leads us to consider a generalized multi-
input mixing block M. This manifold mixing presents a unique opportunity to tackle
the ensemble diversity/individual accuracy trade-off and to improve overall ensemble
results (see Appendix D.3.2). The shared representationM (c0(x0), c1(x1)) feeds the next
convolutional layers. We note κ the mixing ratio between inputs.

The core network C handles features that represent both inputs simultaneously. The
dense layer d0 predicts ŷ0 = d0 [C (M{c0 (x0) , c1 (x1)})] and targets y0, while d1 targets
y1. Thus, the training loss is the sum of two cross-entropies LCE weighted by parametrized
function wr (defined in Appendix D.3.3) to balance the asymmetry when κ ̸= 0.5:

LMixMo = wr(κ)× LCE (y0, ŷ0) + wr(1− κ)× LCE (y1, ŷ1) . (D.1)

At inference, the same input x is repeated twice: the core network C is fed the sum
c0(x)+c1(x) that preserves maximum information from both encodings. Then, the diverse
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predictions are averaged: 1
2 (ŷ0 + ŷ1). This allows us to benefit from functional ensembling

in a single forward pass.

D.3.2 Mixing block

The mixing blockM, combining both inputs into a shared representation, is the corner-
stone of MixMo. Our main intuition was to analyze MIMO as a simplified Mixup variant
where the mixing ratio κ is fixed to 0.5. MixMo generalized framework encompasses
a wider range of variants inspired by MSDA mixing methods. Our first main variant,
named Linear-MixMo, fully extends Mixup with the following mixing block:

MLinear-MixMo (l0, l1) = 2 [κl0 + (1− κ)l1] , (D.2)

where l0 = c0(x0), l1 = c1(x1) and κ ∼ Beta(α, α) and α the concentration parameter. The
second and more effective Cut-MixMo variant adapts the patch mixing from CutMix:

MCut-MixMo (l0, l1) = 2 [1M ⊙ l0 + (1− 1M)⊙ l1] , (D.3)

where 1M is a binary mask with area ratio κ ∼ Beta(α, α), valued at 1 either on a
rectangle or on the complementary of a rectangle. In brief, a patch from c0(x0) is pasted
onto c1(x1), or vice versa. This binary mixing in Cut-MixMo advantageously replaces the
linear interpolation in MIMO and Linear-MixMo: subnetworks are more accurate and
more diverse, as shown empirically in Figure D.5.

First, binary mixing inM trains stronger individual subnetworks for the same reasons
why CutMix improves over Mixup. By masking features, we simulate common object
occlusion problems. This spreads subnetworks’ focus across different locations: the two
classifiers are forced to find information relevant to their assigned input at disjoint loca-
tions. This occlusion remains effective as the receptive field in this first shallow latent
space remains small.

Secondly, linear interpolation is fundamentally ill-suited to induce diversity as full
information is preserved from both inputs. CutMix on the other hand explicitly increases
dataset diversity by presenting patches of images that do not normally appear together.
Such benefits can be directly transposed to MCut-MixMo: binary mixing with patches
increases randomness and diversity between the subnetworks. Indeed, in a similar spirit to
bagging [Bre96], different samples are given to the subnetworks. By deleting asymmetrical
complementary locations from the two inputs, subnetworks will not rely on the same
region and information. Overall, they are less likely to collapse on close solutions.

D.3.3 Loss weighting

Asymmetries in the mixing mechanism can cause one input to overshadow the other.
Notably when κ ̸= 0.5, the predominant input may be easier to predict. We seek a
weighting function wr to balance the relative importance of the two LCE in LMixMo. This
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Figure D.3. – Cut-MixMo training. We sample a mixing mask given κ, and balance the losses
with wr(κ) from Eq. D.4.

weighting modifies the effective learning rate, how gradients flow in the network and
overall how mixed information is represented in features. We then propose to weight via
the parametrized:

wr(κ) = 2
κ1/r

κ1/r + (1− κ)1/r
. (D.4)

This defines a family of functions indexed by the parameter r, visualized for r = 3 in
red on Figure D.3. This power law provides a natural relaxation between two extreme con-
figurations. The first extreme, r = 1, w1(κ) = 2κ, is in line with linear label interpolation
in MSDA. The resulting imbalance in each subnetwork’s contribution to LMixMo causes
lopsided updates. While it promotes diversity, it also reduces regularization: the overshad-
owed input has a reduced impact on the loss. The opposite extreme, r →∞, w∞(κ)→ 1,
removes reweighting. Consequently, wr inflates the importance of hard under-represented
inputs, à la Focal Loss [Lin+17]. However, minimizing the role of the predominant inputs
destabilizes training. Overall, we empirically observe that moderate values of r perform
best as they trade off pros and cons from both extremes.

D.4 Experiments

D.4.1 Implementation details

We evaluate MixMo efficiency on CIFAR-{10,100} [Kri+09], and also consider Tiny
ImageNet [Chr+17a] in the paper. We mostly study the Linear-MixMo and Cut-MixMo
variants with M = 2, with the following hyperparameters values: r = 3 and α = 2.
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MIMO [Hav+21] refers to linear summing, like Linear-MixMo, but with κ = 0.5 instead
of κ ∼ Beta(α, α). Other hyperparameters are taken directly from MIMO [Hav+21].

Different mixing methods create a strong train-test distribution gap [Car+20; Lop+20].
Thus, in Cut-MixMo we actually substitute MCut-MixMo for MLinear-MixMo with prob-
ability 1 − p to accommodate for the summing in M at inference. We set the
probability of patch mixing during training to p = 0.5, with linear descent to
0 over the last twelfth of training epochs. When MixMo is combined with Cut-
Mix, the pixels inputs are: (mx(xi, xk, λ),mx(xj , xk′ , λ

′)) with interpolated targets
(λyi + (1− λ)yk, λ

′yj + (1− λ′)yk′)), where k, k′ are randomly sampled and λ, λ′ ∼
Beta(1, 1). MIMO duplicates samples b times via batch repetition: xi will be associated
with xπ(i) and xπ′(i) in the same batch if b = 2. As the batch size remains fixed, the
count of unique samples per batch and the learning rate is divided by b. Conversely,
the number of steps is multiplied by b. Overall, this stabilizes training but multiplies
its cost by b. We thus indicate an estimated (training/inference) overhead (w.r.t. vanilla
training) in the time column of our tables. Note that some concurrent approaches also
lengthen training: e.g., GradAug [Yan+20c] via multiple subnetworks predictions (≈ ×3).
We equally track accuracies (Top{1,5}, ↑) and the calibrated negative log-likelihood (NLLc)
(↓). Indeed, [Ash+20] shows that we should compare in-domain uncertainty estimations
after temperature scaling (TS) [Guo+17]: we thus split the test set in two and calibrate
(after averaging in ensembles) with the temperature optimized on the other half.

D.4.2 Main results on CIFAR

Table D.1 reports averaged scores over 3 runs for our main experiment on CIFAR
with WRN-28-10 [Zag+16]. Bold highlights best scores, † marks approaches not re-
implemented. Cut-MixMo reaches (85.40% Top1, 0.535 NLLc) on CIFAR-100 with b = 4:
it surpasses our Linear-MixMo (83.08%, 0.656) and MIMO (83.06%, 0.661). Cut-MixMo
is further improved when combined with CutMix (85.77%, 0.524). Results remain strong
when b = 2: Cut-MixMo (84.38%, 0.563) proves better on its own than DE [Lak+17], and
MSDAs like Mixup [Zha+18a; Ver+19] or CutMix [Yun+19]. We see similar trends on
CIFAR-10: Cut-MixMo reaches 0.081 in NLLc, 0.079 with CutMix. Yet, the costlier batch
augmented Mixup BA [Hof+20] edges it out in Top1.
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Table D.1. – Main MixMo results: WRN-28-10 on CIFAR.

Dataset CIFAR-100 CIFAR-10

Approach
Time

Tr./Inf.
Top1

%, ↑
Top5

%, ↑
NLLc

10−2, ↓
Top1

%, ↑
NLLc

10−2, ↓

Vanilla

1/1

81.63 95.49 73.9 96.34 12.6
Mixup 83.44 95.92 65.7 97.07 11.2
Manifold Mixup†

81.96 95.51 73.4 97.45 12.2
CutMix 84.05 96.09 64.8 97.23 9.9
ResizeMix† 84.31 - - 97.60 -

Puzzle-Mix† 2/1 84.31 96.46 66.8 - -

GradAug†
3/1

84.14 96.43 - - -
+ CutMix† 85.51 96.86 - - -

Mixup BA†
7/1 84.30 - - 97.80 -

DE (2 Nets)
2/2

83.17 96.37 66.4 96.67 11.1
+ CutMix 85.74 96.82 57.1 97.52 8.6

MIMO

2/1

82.40 95.78 68.8 96.38 12.1

Linear-MixMo 82.54 95.99 67.6 96.56 11.4
+ CutMix 84.69 97.12 57.2 97.32 9.4

Cut-MixMo 84.38 96.94 56.3 97.31 8.9
+ CutMix 85.18 97.20 54.5 97.45 8.4

MIMO

4/1

83.06 96.23 66.1 96.74 11.4

Linear-MixMo 83.08 96.26 65.6 96.91 10.8
+ CutMix 85.47 97.04 55.8 97.68 8.7

Cut-MixMo 85.40 97.22 53.5 97.51 8.1
+ CutMix 85.77 97.42 52.4 97.73 7.9

D.4.3 MixMo efficiency

Figure D.4 shows how MixMo grows stronger than DE (green curves) as width w in
WRN-28-w increases. The parameterization becomes appropriate at w = 4: Cut-MixMo
(yellow curves) then matches DE (with half the parameters) in Figure D.4(a) and its
subnetworks match a vanilla network in Figure D.4(b). Beyond, MixMo better uses over-
parameterization: Cut-MixMo + CutMix surpasses DE + CutMix in NLLc for w≥5, and
this is true in Top1 for w≥10. Compared to our strong Linear-MixMo + CutMix (purple
curves), Cut-MixMo performs similarly in Top1, and better with CutMix for w≥4. While
Linear-MixMo and DE learn from occlusion, Cut-MixMo also benefits from CutMix,
notably from the induced label smoothing. Overall, Cut-MixMo, even without CutMix,
significantly better estimates uncertainty.
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(a) Ensemble Top1 and NLLc. (b) Individual Top1.

Figure D.4. – Parameters efficiency (metrics/#params). CIFAR-100 with WRN-28-w, b=4. Compar-
isons between (a) ensemble and some of their (b) individual counterparts.

D.4.4 MixMo analysis on CIFAR-100 w/ WRN-28-10

D.4.4.1 The mixing blockM

We study the impact of patch mixing through the lens of the ensemble diversity/individ-
ual accuracy trade-off. We measure diversity via the pairwise ratio-error [Aks03] (dre, ↑),
averaged over the last 10 epochs. As argued in Appendix D.3.2, patch mixing increases
diversity compared to linear mixing in Figure D.5. As the probability p of patch mixing
grows, so does diversity: from dre(p = 0.0) ≈ 0.78 (Linear-MixMo) to dre(p = 0.5) ≈ 0.85

(Cut-MixMo). In contrast, DE has dre ≈ 0.76 while MIMO has dre ≈ 0.77 on the same
setup. Increasing p past 0.6 boosts diversity even more at the cost of subnetworks’ accura-
cies: this is due to underfitting and an increased test-train distribution gap. p ∈ [0.5, 0.6]

is thus the best trade off.

D.4.4.2 Generalization to M ≥ 2 subnetworks

We try to generalize MixMo to more than M = 2 subnetworks in Figure D.6. Cut-
MixMo’s subnetworks perform at 82.3% when M = 2 vs. 79.5% when M = 3. In MIMO,
it’s 79.8% vs. 77.7%. Because subnetworks do not share features, higher M degrades
their results: only two can fit seamlessly. Ensemble Top1 overall decreases in spite of
the additional predictions, as already noticed in MIMO [Hav+21]. This reflects MixMo’s
strength in over-parametrized regimes, but also its limitations with fewer parameters
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Figure D.5. – Diversity/accuracy as function of p with r=3.

when subnetworks underfit (recall previous Figure D.4). Facing similar findings, MIMO
[Hav+21] introduced input repetition so that subnetworks share their features, at the cost
of drastically reducing diversity.

Figure D.6. – Ensemble/individual accuracies for M ≥ 2.

D.4.4.3 Robustness to image corruptions

To measure MixMo effectiveness under distribution shifts, we now consider CIFAR-
100-c [Hen+19a], a version CIFAR-100 where test images have been corrupted. We report
WRN-28-10 results with and without AugMix [Hen+19b], a pixels data augmentation tech-
nique specialized on this task. Table D.2 shows that Cut-MixMo (b = 4) best complements
AugMix and reaches 71.1% Top1.

Table D.2. – Robustness comparison on CIFAR-100-c.
Approach 1 Net. CutMix Puzzle-Mix† DE (2 Nets) MIMO Linear-MixMo Cut-MixMo
AugMix - ✓ - - ✓ - ✓ - - ✓ - ✓

Top1 ↑ 52.2 67.8 51.93 58.09 70.46 53.8 69.9 53.6 55.6 70.4 57.0 71.1
Top5 ↑ 73.7 87.5 72.03 77.3 87.7 74.9 88.9 74.9 76.1 89.4 77.4 89.5
NLL ↓ 2.50 1.38 2.13 1.96 1.34 2.27 1.24 2.66 2.33 1.22 2.04 1.16
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D.4.5 Ensemble of MixMo

When combined with CutMix [Yun+19], Cut-MixMo previously set a new state of the
art of 85.77% with N = 1 WRN-28-10. Since MixMo adds very little parameters (≈ +1%),
we can combine independently trained MixMo like in traditional functional ensembling.
This ensembling of ensemble of subnetworks leads in practice to the averaging of M×N =

2×N predictions. Final Table D.3 shows it further reaches 86.63% with N = 2 and even
86.81% with N = 3.

Table D.3. – Best results for WRN-28-10 on CIFAR-100 via Cut-MixMo + CutMix [Yun+19] +
N -ensembling and b = 4. Previous Top1 sotas: 85.23 [Qin+20], 85.51 [Yan+20c], 85.74 [Zha+20b].

N # params
Average Best run

Top1 ↑ Top5 ↑ NLLc ↓ Top1 ↑ Top5 ↑ NLLc ↓
1 36.6M 85.77 ± 0.14 97.36 ± 0.02 0.524 ± 0.005 85.92 97.36 0.518

2 73.2M 86.63 ± 0.19 97.73 ± 0.05 0.479 ± 0.003 86.75 97.80 0.475

3 109.8M 86.81 ± 0.17 97.85 ± 0.04 0.464 ± 0.002 86.94 97.83 0.464

D.5 Conclusion

We introduce the MixMo framework that generalizes the multi-input multi-output
paradigm. MixMo can be analyzed as either an ensembling method or a mixed samples
data augmentation, while remaining complementary to works from both lines of research.
MixMo improved the state of the art on CIFAR-100, CIFAR-100-c and Tiny ImageNet.

Limitations. Despite some relative success on medium-scale datasets, the MixMo
framework has certain constraints. First, it is wasteful in its use of parameterization.
Indeed, as we latter highlighted in MixShare [Sun+22], the learned subnetworks fail to
share even generic features. Specifically, each channel or feature is almost exclusively used
by one subnetwork; thus each additional subnetwork significantly reduces the effective
size of the other subnetworks. This explains why MixMo requires (very) wide base mod-
els for larger datasets, and MixMo’s failure with M > 2 subnetworks in Appendix D.4.4.2.
Though we tried to mitigate this failure in [Sun+22], results remained inconclusive. Over-
all, this limits MixMo’s applicability. Moreover, MixMo requires training from scratch;
and thus cannot benefit from transfer learning from foundation models. This limitation
renders MixMo less relevant at the end of this thesis, thus was relegated in Appendix for
the sake of brevity.
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G E N E R A L I Z AT I O N U N D E R C O R R E L AT I O N S H I F T S

E.1 Introduction

The success of DNNs in supervised learning [Kri+12] relies on the crucial assump-
tion that the train and test data distributions are identical. In particular, the tendency of
networks to rely on simple features [Val+19; Gei+20] is generally a desirable behavior
reflecting Occam’s razor. However, in case of spurious features, this simplicity bias dete-
riorates performance when more complex features are needed [Ten18; Sha+20; Ker+21].
For example, in the recent fight against Covid-19, most of the DL methods developed to
detect coronavirus from chest scans were shown useless for clinical use [DeG+21; Rob+21]:
models actually exploited simple bias in the training datasets such as patients’ age or
body position rather than truly analyzing medical pathologies.

To better generalize under correlation shift, ensembling strategies are useless, as veri-
fied empirically in Section 4.6.3.4: theoretically, they do not reduce the bias, as they all
learn the same predictive mechanism based on the same spurious features. Indeed, when
the train-test shifts occur in the posterior covariate distributions, additional information is
required to differentiate between the relevant and the spurious features [Bla+11; Mua+13].
The standard invariance strategy [Arj+19] is to learn simultaneously from multiple training
domains, across which we assume an underlying invariant causal mechanism [Pet+16].
To remove the domain-dependent explanations, different invariance criteria across those
training domains have been proposed. [Gan+16; Sun+16] enforce similar feature distribu-
tions, others [Arj+19; Kru+21] force the classifier to be simultaneously optimal across
all domains. Yet, despite the popularity of this research topic, none of these methods
perform significantly better than the classical empirical risk minimization (ERM) when
applied with controlled model selection and restricted hyperparameter search [Gul+21;
Ye+22]. These failures motivate the need for new ideas.

To foster the emergence of a shared mechanism with consistent generalization prop-
erties, our intuition is that learning should progress consistently and similarly across
domains. Besides, the learning procedure of DNNs is dictated by the distribution of the
gradients with respect to the network weights [Yin+18; San+20], usually backpropagated
in the network during gradient descent. Additionally, individual gradients are expressive
representations of the input [For+19b; Cha+19]. Thus, we seek distributional invariance
across domains in the gradient space: domain-level gradients should be similar, not only in
average direction, but most importantly in statistics such as variance and disagreements.

161
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Figure E.1. – Fishr considers the individual (per-sample) gradients of the loss in the network
weights θ. Specifically, Fishr matches the domain-level gradient variances of the distributions
across the two training domains: A ({gi

A}nA
i=1 in orange) and B ({gi

B}nB
i=1 in blue). We will show

how this regularization during the learning of θ improves the out-of-distribution generalization
properties by aligning the domain-level loss landscapes at convergence.

In this chapter, we propose the Fishr regularization for generalization under correlation
shift. As summarized in Figure E.1, Fishr enforces domain invariance in the space of
the gradients of the loss; we match the domain-level variances of gradients, i.e., the second
moment of the gradient distributions. In contrast, previous gradient-based works such as
Fish [Shi+21] only match the domain-level gradients means, i.e., the first moment.

Our strategy is also motivated by the close relations between the gradient variance,
the Fisher Information [Fis22] and the Hessian of the loss. This explains the name of our
work, Fishr, using gradients as in Fish and related to the Fisher Matrix. Notably, we will
study how Fishr forces the model to have similar domain-level Hessians. More broadly, Fishr
aligns the domain-level loss landscapes locally around the final weights and promotes
consistent explanations [Par+21].

To reduce the computational cost, we justify an approximation that tackles the gradients
only in the classifier, easily implemented with BackPACK [Dan+20].

• We introduce Fishr, a scalable regularization that brings closer the domain-level
gradient variances (Appendix E.3.1).

• We theoretically justify that Fishr matches domain-level risks and Hessians, and
consequently, reduces inconsistencies across domains (Appendix E.3.2).

• Empirically, our experiments validate that Fishr can tackle correlation shifts on
ColoredMNIST [Arj+19] (Appendix E.4).
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This chapter has led to the publication of the following paper: Alexandre Ramé, Corentin
Dancette, and Matthieu Cord. “Fishr: Invariant Gradient Variances for Out-of-Distribution
Generalization”. In: ICML. 2022.

E.2 Related work

Our model is a deep neural network (DNN) f(·, θ) (parametrized by θ) made of a deep
features extractor Φ (parametrized by ϕ) on which we plug a dense linear classifier w

(parametrized by ω). In training, we have access to different domains E : for each domain
e ∈ E , the dataset De =

{(
xi
e,y

i
e

)}ne

i=1
contains ne i.i.d. (input, labels) samples drawn from

a domain-dependent probability distribution. Combined together, the datasets {De}e∈E
are of size nS =

∑
e∈E ne. Our goal is to learn weights θ so that f predicts well on a new

test domain, unseen in training: θ should ideally capture an invariant mechanism across
training domains. Following standard notations, ∥M∥2F denotes the Frobenius norm of
matrix M ; ∥v∥22 denotes the euclidean norm of vector v; 1 is a column vector with all
elements equal to 1.

The standard ERM [Vap99] framework simply minimizes the average empirical risk
over all training domains, i.e., 1

|E|
∑

e∈E Re(θ). To tackle the correlation shifts, many ap-
proaches try to exploit the domain information. Some works explore data augmentations
to mix samples from different domains [Wan+20b; Wu+20b], some re-weight the train-
ing samples to favor underrepresented groups [Sag+20a; Sag+20b; Zha+21] and others
include domain-dependent weights [Din+17a; Man+18]. Yet, most recent works promote
invariance via a regularization criterion and only differ by the choice of the statistics to
be matched across training domains. They can be categorized into three groups: these
methods enforce agreement either (i) in features (ii) in predictors or (iii) in gradients.

First, some approaches aim at extracting domain-invariant features and were exten-
sively studied for unsupervised domain adaptation. The features are usually aligned
with adversarial methods [Gan+16; Gon+16; Li+18a; Li+18b] or with kernel methods
[Mua+13; Lon+14]. Yet, the simple covariance matching in CORAL [Sun+16] performs
best on various tasks for OOD generalization [Gul+21]. With Zij

e the j-th dimension of
the features extracted by Φϕ for the i-th example xi

e of domain e ∈ E = {A,B}, CORAL
minimizes ∥Cov(ZA)− Cov(ZB)∥2F where Cov(Ze) =

1
ne−1(Z

⊤
e Ze − 1

ne

(
1⊤Ze

)⊤ (
1⊤Ze

)
)

is the feature covariance matrix. CORAL is more powerful than mere feature match-

ing
∥∥∥ 1
nA

1⊤ZA − 1
nB

1⊤ZB

∥∥∥
2

2
as in [Tze+14]. Yet, [Joh+19] and [Zha+19c] show that these

approaches are insufficient to guarantee good generalization.

Motivated by arguments from causality [Pea09] and the idea that statistical dependen-
cies are epiphenomena of an underlying structure, Invariant Risk Minimization (IRM)
[Arj+19] explains that the predictors should be invariant [Pet+16; Roj+18], i.e., simulta-
neously optimal across all domains. Yet, recent works point out pitfalls of IRM [Guo+21;
Kam+21; Ahu+21], that does not provably work with non-linear data [Ros+21] and could
not improve over ERM when hyperparameter selection is restricted [Koh+21; Gul+21].
Among many suggested improvements [Cha+20; Idn+20; Ten+21; Ahm+21], Risk Extrap-
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olation (V-REx) [Kru+21] argues that training risks from different domains should be
similar and thus penalizes |RA −RB|2 when E = {A,B}.

A third and most recent line of work promotes agreements between gradients with
respect to network weights. Gradient agreements have been previously employed for mul-
titasks [Du+18; Yu+20], continual [Lop+17], meta [Fin+17; Zha+20a] and reinforcement
[Zha+19b] learning. In OOD generalization, [Koy+20; Par+21; Shi+21] try to find mini-
mas in the loss landscape that are shared across domains; they tackle the domain-level
expected gradients:

ge = E(xe,ye)∼De
∇θℓ (f(xe, θ),ye) . (E.1)

When E = {A,B}, IGA [Koy+20] minimizes ||gA − gB||22; Fish [Shi+21] increases gA · gB ;
AND-mask [Par+21] and others [Man+21b; Sha+21] update weights only when gA and
gB point to the same direction. Along with the increased computation cost, the main
limitation of previous gradient-based methods is the per-domain batch averaging of gra-
dients: this removes more granular statistics, in particular the information from pairwise
interactions between gradients from samples in a same domain. In opposition, our new
regularization keeps extra information from individual gradients and matches across
domains the domain-level gradient variances. In brief, Fishr is similar to the covariance-
based CORAL [Sun+16] but in the gradient space rather than in the feature space.

E.3 Fishr

E.3.1 Gradient variance matching

The individual gradient gi
e = ∇θℓ

(
f(xi

e, θ),y
i
e

)
is the first-order derivative for the i-th

data example
(
xi
e,y

i
e

)
from domain e ∈ E with respect to the weights θ. Previous methods

have matched the gradient means ge =
1
ne

∑ne
i=1 g

i
e for each domain e ∈ E . These gradient

means capture the average learning direction but can not capture gradient disagreements
[San+20; Yin+18]. With Ge = [gi

e]
ne
i=1 of size ne×|θ|, we compute the domain-level gradient

variance vectors of size |θ|:

ve = Var(Ge) =
1

ne − 1

ne∑

i=1

(
gi
e − ge

)2
, (E.2)

where the square indicates an element-wise product. To reduce the distribution shifts
in f(·, θ) across domains, we bring the domain-level gradient variances {ve}e∈E closer.
Hence, our Fishr regularization is:

LFishr(θ) =
1

|E|
∑

e∈E
∥ve − v∥22 , (E.3)

the square of the Euclidean distance between the gradient variance from the different
domains e ∈ E and the mean gradient variance v = 1

|E|
∑

e∈E ve. Balanced with a hyper-
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parameter coefficient λ > 0, this Fishr penalty complements the original ERM objective,
i.e., the empirical training risks:

L(θ) = 1

|E|
∑

e∈E
Re(θ) + λLFishr(θ). (E.4)

Remark E.1. Gradients gi
e can be computed on all network weights θ. Yet, to reduce the memory

and training costs, they will often be computed only on a subset of θ, e.g., only on the linear
classifier’s weights ω.

E.3.2 Theoretical analysis

We theoretically motivate our Fishr regularization by leveraging the domain inconsis-
tency score introduced in AND-mask [Par+21]. We first derive a generalized upper bound
for this score. Then, we show that Fishr minimizes this upper bound by matching simul-
taneously domain-level risks and Hessians.

E.3.2.1 Inconsistency formalism

Figure E.2. – Loss landscapes around inconsistent weights θ∗ at convergence. N0.2
A,θ∗ contains

weights θ for which RA(θ) is low (≤ 0.2) but RB(θ) is high (≥ 0.9). This inconsistency is due
to conflicting domain-level loss landscapes, specifically gaps between domain-level risks and
curvatures at θ∗. This is visible in the disagreements across the variances of gradients {gi

A}nA
i=1

and {gi
B}nB

i=1.
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[Par+21] argues that “patchwork solutions sewing together different strategies” for dif-
ferent domains may not generalize well: good weights should be optimal on all domains
and “hard to vary” [Deu11]. They formalize this insight with an inconsistency score:

Iϵ (θ∗) = max
(A,B)∈E2

max
θ∈Nϵ

A,θ∗
|RB(θ)−RA(θ

∗)| , (E.5)

where θ ∈ N ϵ
A,θ∗ if there exists a path in the weights space between θ and θ∗ where the risk

RA remains in an ϵ > 0 interval around RA(θ
∗). I increases with conflicting geometries

in the loss landscapes around θ∗ as in Figure E.2: i.e., when another “close” solution θ is
equivalent to the current solution θ∗ in a domain A but yields different risks in B. For
e ∈ E , the second-order Taylor expansion of Re around θ∗ = 0 (with a change of variable)
gives:

Re(θ) = Re(θ
∗) + θ⊤∇θRe (θ

∗) +
1

2
θ⊤Heθ +O(∥θ∥22),

where the Hessian He = ∇2
θRe(θ

∗) approximates the local curvature of the loss landscape.
Moreover, we assume simultaneous convergence, i.e., θ∗ is a local minima across all
domains: ∇θRe(θ

∗) = 0. Thus, locally around θ∗:

max
θ∈Nϵ

A,θ∗
|RB(θ)−RA(θ

∗)| ≈ max
|RA(θ)−RA(θ∗)|≤ϵ

|RB(θ)−RA(θ
∗)|

≈ max
1
2 |θ⊤HAθ|≤ϵ

∣∣∣∣RB(θ
∗) +

1

2
θ⊤HBθ −RA(θ

∗)

∣∣∣∣

⪅ |RB(θ
∗)−RA(θ

∗)|+ max
1
2 |θ⊤HAθ|≤ϵ

1

2

∣∣∣θ⊤HBθ
∣∣∣ ,

(E.6)

where we deduced the last line from the triangle inequality. In [Ram+22a] we formally
demonstrate the following equality when the per-domain risks are assumed quadratic.

Proposition E.1. Under the quadratic bowl assumption (i.e., when per-domain risks are assumed
quadratic with positive definite Hessians) and for sufficiently small ϵ, then:

Iϵ (θ∗) = max
(A,B)∈E2

(RB(θ
∗)−RA(θ

∗) + max
1
2
θ⊤HAθ≤ϵ

1

2
θ⊤HBθ). (E.7)

The Hessian being positive definite is a standard hypothesis, notably used in [Par+21],
that is empirically reasonable [Sag+18]: “in only very few steps [...] large negative eigen-
values disappear” [Gho+19]. We now analyze the two terms from this bound.

The first term in the RHS of Proposition E.1 is the difference between domain-level
risks, whose square is the criterion minimized in V-REx [Kru+21]. We will show that Fishr
forces this term to be small in Appendix E.3.2.2.
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For the second term, we follow the diagonal approximation of the Hessians from
[Par+21]. In that case, He = diag (λe

1, · · · , λe
h) with ∀i ∈ {1, . . . , h} , λe

i > 0. Then:

max
1
2
θ⊤HAθ≤ϵ

1

2
θ⊤HBθ = max

∥θ̃∥22≤ϵ

∑

i

θ̃2i λ
B
i /λ

A
i = ϵ×max

i
λB
i /λ

A
i . (E.8)

This is large when exists i such that λA
i is small but λB

i is large: indeed, a small weight
perturbation in the direction of the associated eigenvector would change the loss slightly
in the domain A but drastically in domain B. Thus, this second term decreases when HA

and HB have similar eigenvalues. This result holds when Hessians are co-diagonalizable.
In conclusion, this explains why forcing HA = HB reduces inconsistencies in the loss
landscape and thus improves generalization. AND-mask matches Hessians by zeroing
out gradients with inconsistent directions across domains; however, this masking strategy
introduces dead zones [Sha+21] in weights where the model could get stuck, ignores gra-
dient magnitudes and empirically performs poorly with real datasets from DomainBed.
As shown in Appendix E.3.2.3, Fishr proposes a new method to align domain-level Hes-
sians leveraging the close relations between the gradient variance, the Fisher Information
and the Hessian.

E.3.2.2 Fishr matches the domain-level risks

Gradients take into account the label Y , which appears as an argument for the loss ℓ.
Hence, gradient-based approaches are ‘label-aware’ by design. In contrast, feature-based
methods were shown to fail in case of label shifts, because they do not consider Y [Joh+19;
Zha+19c]. The fact that the label and the loss appear in the formula of the gradients has
another important consequence: matching gradient distributions also matches training
risks, as motivated in V-REx [Kru+21]. We confirm this insight in Table E.2: matching
gradient variances with Fishr induces |RA − RB|2 → 0 when E = {A,B}. Intuitively,
gradient amplitudes are directly weighted by the loss values: multiplying the loss by
a constant will also multiply the gradients by the same constant. Thus roughly, if the
domain-level empirical training risks are different, then the domain-level gradient norms
should also differ. Theoretically, we prove in the paper that Fishr regularization component
with reference to the classification bias is exactly the difference between domain-level
mean squared errors. We recover the objective from V-REx [Kru+21], with a different loss
(squared error instead of negative log likelihood).

E.3.2.3 Fishr matches the domain-level Hessians

The Hessian matrix H =
∑n

i=1∇2
θℓ
(
fθ(x

i),yi
)

is of key importance in deep learn-
ing. Yet, H cannot be computed efficiently in general. Recent methods [Izm+18; Par+21;
For+21] tackled the Hessian indirectly by modifying the learning procedure. In contrast,
we use the fact that the diagonal of H is approximated by the gradient variance Var(G);
this is confirmed in Table E.1. This result is derived below from 3 individual and standard
approximation steps.
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Table E.1. – Cosine similarity between Hessian diagonals and gradient variances,
cos (Diag (He) ,Var(Ge)), for an ERM at convergence on ColoredMNIST with the two training
domains e ∈ {90%, 80%}.

e = 90% e = 80%

On classifier weights ω 0.9999980 0.9999905

On all network weights θ 0.9971040 0.9962264

The Hessian and the “true” Fisher information matrix (FIM). The “true” FIM F =∑n
i=1 Eŷ∼Pθ(·|xi)

[
∇θ log pθ(ŷ|xi)∇θ log pθ(ŷ|xi)⊤

]
[Fis22; CR45] approximates the Hessian

H with theoretically probably bounded errors under mild assumptions [Sch02].

The “true” FIM and the “empirical” FIM. Yet, F remains costly as it demands one
backpropagation per class. That’s why most empirical works (e.g., in compression [Fra+21;
Liu+21] and optimization [Dan+21]) approximate the “true” FIM F with the “empirical”
FIM F̃ = G⊤

e Ge =
∑n

i=1∇θ log pθ(y
i|xi)∇θ log pθ(y

i|xi)⊤ [Mar14] where pθ(·|x) is the
density predicted by fθ on input x. While F uses the model distribution Pθ(·|X), F̃
uses the data distribution P (Y |X). Despite this key difference, F̃ and F were shown
to share the same structure and to be similar up to a scalar factor [Tho+20]. They also
have analogous properties: Tr(F̃ ) ≈ Tr(F ). This was discussed in [Li+20c] and further
highlighted even at early stages of training (before overfitting) in the Fig. 1 and the
Appendix S3 of [Sin+20a].

The “empirical” FIM and the gradient covariance. Critically, F̃ is nothing else than
the unnormalized uncentered covariance matrix when ℓ is the negative log-likelihood.
Thus, the gradient covariance matrix C = 1

n−1

(
G⊤G− 1

n

(
1⊤G

)⊤ (
1⊤G

))
of size |θ|×|θ|

and F̃ are equivalent (up to the multiplicative constant n) at any first-order stationary
point: C ∝∼ F̃ . Overall, this suggests that C and H are closely related [Jas+18];.

Table E.2. – Invariance analysis at convergence on ColoredMNIST across the two training do-
mains E = {90%, 80%}. Compared to ERM, Fishr matches the gradient variance (Diag(C90%) ≈
Diag(C80%)) in all network weights θ. Most importantly, this enforces invariance in domain-level
risks (R90% ≈ R80%) and in domain-level Hessians (Diag(H90%) ≈ Diag(H80%)). The gradient
variance, computable efficiently with a unique backpropagation, serves as a proxy for the Hessian.
Details and more experiments in Figure E.3.

ERM Fishr

∥Var(G90%)−Var(G80%)∥2F 1.6 4.1× 10−5

|R90% −R80%|2 1.0× 10−2 3.8× 10−6

∥Diag (H90% −H80%)∥2F 2.9× 10−1 2.7× 10−4

Consequences for Fishr. Critically, Fishr considers the gradient variance Var(G),
i.e., the diagonal components of C. In our multi-domain framework, we define the
domain-level matrices with the subscript e. Table E.2 empirically confirms that match-
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ing {Diag(Ce)}e∈E (i.e., {Var(Ge)}e∈E ) with Fishr forces the domain-level Hessians
{Diag(He)}e∈E to be aligned at convergence (on the diagonal for computational reasons).
Tackling the second moment of the first-order derivatives enables to regularize the second-
order derivatives. Moreover, in [Ram+22a] we confirm that matching the diagonals of
{Ce}e∈E or {F̃e}e∈E (i.e., centering or not the variances) perform similarly.

Remark E.2. Limitation of our approximation. We acknowledge that approximating the
“true” FIM F by the “empirical” FIM F̃ is not fully justified theoretically [Mar14; Kun+19].
Indeed, this approximation is valid only under strong assumptions, in particular χ2 convergence
of predictions Pθ(·|X) towards labels P (Y |X), as detailed in Proposition 1 from [Tho+20]. In
Fishr, we trade off theoretical guarantees for efficiency.

Remark E.3. Diagonal approximation. The empirical similarities between C and H motivate
using gradient variance rather than gradient covariance, which scales down the number of
targeted components from |θ|2 to |θ|. Indeed, diagonally approximating the Hessian is common: e.g.,
for OOD generalization [Par+21], optimization [LeC+12; Kin+15], continual learning [Kir+17]
and pruning [LeC+90; The+18]. This is based on the empirical evidence [Bec+88] that Hessians
are diagonally dominant at the end of training. Our diagonal approximation is also motivated
by the critical importance of Tr(C) [Jas+21; Fag+20] to analyze the generalization properties of
DNNs. We confirm empirically in the paper that considering the off-diagonal parts of C performs
no better than just matching the diagonals.

Conclusion. Fishr efficiently matches (i) domain-level empirical risks and (ii) domain-
level Hessians across the training domains, using gradient variances as a proxy. This will
align domain-level loss landscapes, reduce domain inconsistencies and increase domain
generalization. In particular, the domain-level Hessian matching illustrates that Fishr is
more than just a generalization of gradient-mean approaches such as Fish [Shi+21].

E.4 Experiments

We validate Fishr effectiveness on ColoredMNIST [Arj+19], where the task is to predict
whether the digit is below or above 5. Moreover, the labels are flipped with 25% probability.
Critically, the digits’ colors spuriously correlate with the labels: the correlation strength
varies across the two training domains E = {90%, 80%}. To test whether the model has
learned to ignore the color, this correlation is reversed at test time. In brief, a biased model
that only considers the color would have 10% test accuracy whereas an oracle model that
perfectly predicts the shape would have 75%. As previously done in V-REx [Kru+21], we
strictly follow the IRM implementation and just replace the IRM penalty by our Fishr
penalty. This means that we use the exact same MLP and hyperparameters, notably the
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same two-stage scheduling for the regularization strength λ, that is low until epoch 190 and
then jumps to a large value, which was optimized via a grid-search for IRM.

Table E.3. – ColoredMNIST results. All methods use hyperparameters optimized for IRM.

Method Train acc. Test acc. Gray test acc.

ERM 86.4 ± 0.2 14.0 ± 0.7 71.0 ± 0.7
ENS 86.8 14.1 71.7
IRM 71.0 ± 0.5 65.6 ± 1.8 66.1 ± 0.2

V-REx 71.7 ± 1.5 67.2 ± 1.5 68.6 ± 2.2

Fishrθ 69.6 ± 0.9 71.2 ± 1.1 70.2 ± 0.7
Fishrω 71.0 ± 0.9 69.5 ± 1.0 70.2 ± 1.1
Fishrϕ 65.6 ± 1.3 73.8 ± 1.0 70.0 ± 0.9

Table E.3 reports the accuracy averaged over 10 runs with standard deviation. ENS
averages the predictions of the 10 ERM runs. Fishrθ (i.e., applying Fishr on all weights
θ) obtains the best trade-off between train and test accuracies; notably in test, it reaches
71.2%, or 70.2% when digits are grayscale. Moreover, computing the gradients only in the
classifier wω performs almost as well (69.5% in test for Fishrω) while reducing drastically
the computational cost. Finally, Fishrϕ only in the features extractor ϕ works best in
test, though it has lower train accuracy. This last experiment shows that we can reduce
domain shifts without explicitly forcing the predictors to be simultaneously optimal.
These results highlight the effectiveness of gradient variance matching, even with standard
hyperparameters, at different layers of the network.

Figure E.3. – ColoredMNIST dynamics. At epoch 190, λ strongly steps up: then, the Fishrθ regu-
larization matches the domain-level gradient variances (red) across domains E = {90%, 80%}, and
consequently, the training empirical risks (dotted pink) and Hessians (purple). This reduces train
accuracy (orange) but increases test accuracy (blue) as the network learns to predict the digit’s
shape.

Moreover, the training dynamics in Figure E.3 show that the domain-level empirical
risks get closer once the Fishrθ gradient variance matching loss is activated after step 190

(|R90%−R80%| → 0), even though predicting accurately on the domain 90% is easier than
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on the domain 80%. This confirms insights from Appendix E.3.2.2. Similarly, we observe
that Fishr matches Hessians across the two training domains. Overall, Fishr regularization
reduces train accuracy, but considerably increases test accuracy.

Experiments on DomainBed. In the paper [Ram+22a], we have also conducted exten-
sive experiments on the DomainBed benchmark [Gul+21]. When Fishr was published,
it was the sota method; moreover, according to the latest review paper [Yu+23], Fishr
remains the best method based on invariance. However, all the strategies based on en-
sembling were shown more efficient on these real-world datasets under which diversity
shifts dominate. Therefore, for the sake of brevity, we do not report these DomainBed
experiments in this thesis, but refer the reader to the published version of the paper.

E.5 Conclusion

In this chapter, we addressed a limitation of ensembling strategies; their inability to
tackle correlation shifts. To this end, we leverage the invariance paradigm, and specif-
ically derive a new and simple regularization, Fishr, matching the gradient variances
across domains as a proxy for matching domain-level risks and Hessians. We prove that
invariance can tackle correlation shift. We hope to pave the way towards strategies that
simultaneously tackle diversity and correlation shifts.
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Figure 5.1 The different fine-tuning strategies discussed in this chapter:
vanilla fine-tuning [Oqu+14], moving average (MA) [Izm+18] and
variants [Wor+22b], DiWA [Ram+22b] introduced in Chapter 4

and the similar model soups [Wor+22a], inter-training [Pha+18],
fusing [Cho+22b] and our novel model ratatouille. They start with a
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trained model on auxiliary tasks (thin solid arrows ): these
auxiliary fine-tunings can be performed by different contributors
of the community on their own data. Then, all strategies perform
fine-tuning on the target task of interest (thick solid arrows ).
Finally, the weights fine-tuned on the target task are used as is, or
are averaged (dashed arrows ) into a final model. Ratatouille
(i) enables compute parallelism, (ii) maximizes the amount of di-
versity in models’ predictions, (iii) achieves sota performance in
DomainBed [Gul+21], the standard computer vision benchmark
for OOD generalization and (iv) does not incur any inference or
training overhead compared to a traditional hyperparameter search. 52

Figure 5.2 Illustrations of (a) different linear mode connectivity (LMC) con-
ditions, and (b) model ratatouille. In subplot (a), we illustrate Ob-
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Figure 5.3 Explorations on Q-diversity [Kun+03] and its positive impact on
accuracy for the OOD test domain “Art” from OfficeHome. In
(a), we compute the diversity between pairs of models either di-
rectly fine-tuned from ImageNet, either inter-trained on Domain-
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gain of their weight average compared to the average of their in-
dividual accuracies. In (d), we average M models: a proportion
(1− µ) start directly from ImageNet, the others µ are inter-trained
on DomainNet. The accuracy of the weight average is maximized
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176 List of Figures

Figure 5.4 Figures 5.4(a) to 5.4(e) validate Hypothesis 5.1 by plotting λ →
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wlp, (1− λ) · ϕaux

1 + λ · ϕaux
2

))
, where wlp is the linear probe

of ϕpt
IM, and ϕaux

1 and ϕaux
2 are fine-tuned on the two auxiliary

datasets in the legend “Dataset1 to Dataset2”. Figures 5.4(f) to 5.4(j)
support Hypothesis 5.2 by plotting λ→ accT ((1− λ) · θ1 + λ · θ2)
where θ1 and θ2 are fine-tuned on the target task starting respec-
tively from (wlp, ϕaux

1 ) and (wlp, ϕaux
2 ). We encounter two excep-

tions to Hypothesis 5.2 (Figures 5.4(i) and 5.4(j)), due to the fact
that neither the auxiliary (RxRx) nor the target task (TerraIncognita
and Cameyon) bear enough similarity with the pre-training task
(ImageNet). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Figure 5.6 The models were trained on ID domains “Clipart”, “Product”,
and “Photo” from OfficeHome, thus “Art” is the OOD domain.
First, in subplot (a), we validate Hypothesis 5.2 on the ID vali-
dation split. Then, we analyze the relations between diversity, ID
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when averaging M = 8 weights: (1 − µ) are fine-tuned on Of-
ficeHome directly from ImageNet, the others µ are inter-trained
on DomainNet. We observe a lack of correlation between ID and
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ImageNet, either inter-trained on DomainNet. Though having dif-
ferent initializations increases diversity both in ID and in OOD,
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Figure 6.1 Figure 6.1(a) details the different steps in rewarded soup. After
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N independent RL fine-tunings on the proxy rewards {Ri}Ni=1.
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the λ-interpolation (0 ≤ λ ≤ 1) reveals the green front of Pareto-
optimal solutions, i.e., that cannot be improved for one reward
without sacrificing the other. RS matches the costly yellow front of
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R1+R2
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weights θ1 and θ2; sliding the interpolation coefficient λ from 0
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Figures 6.2(a) and 6.2(b), we additionally show the multiple MORL
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4 ) average the weights fine-tuned for the assistant
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(blue stars every epoch) and R2 (red stars), we consider stan-
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tion, we learn θava and θcafe by optimizing the two reward mod-
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