Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization

Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, David Lopez-Paz

ICML 2023

Meta

Goal: generalization under distribution shift

initialized from pretrained foundation model

Training Data

Class	Probability
Cow	0.8
Camel	0.19
Bear	0.01

How to best fine-tune foundation models ?

The <u>github.com/facebookresearch/domainbed</u> benchmark compares the different OOD approaches.

Key insight: ERM remained the best approach until ...

[Gulrajani2021] In Search of Lost Domain Generalization. ICLR.

Available algorithms

The currently available algorithms are:

- Empirical Risk Minimization (ERM, Vapnik, 1998)
- Invariant Risk Minimization (IRM, Arjovsky et al., 2019)
- Group Distributionally Robust Optimization (GroupDRO, Sagawa et al., 2020)
- Interdomain Mixup (Mixup, Yan et al., 2020)
- Marginal Transfer Learning (MTL, Blanchard et al., 2011-2020)
- Meta Learning Domain Generalization (MLDG, Li et al., 2017)
- Maximum Mean Discrepancy (MMD, Li et al., 2018)
- Deep CORAL (CORAL, Sun and Saenko, 2016)
- Domain Adversarial Neural Network (DANN, Ganin et al., 2015)
- Conditional Domain Adversarial Neural Network (CDANN, Li et al., 2018)
- Style Agnostic Networks (SagNet, Nam et al., 2020)
- Adaptive Risk Minimization (ARM, Zhang et al., 2020), contributed by @zhangmarvin
- Variance Risk Extrapolation (VREx, Krueger et al., 2020), contributed by @zdhNarsil
- Representation Self-Challenging (RSC, Huang et al., 2020), contributed by @SirRob1997
- Spectral Decoupling (SD, Pezeshki et al., 2020)
- · Learning Explanations that are Hard to Vary (AND-Mask, Parascandolo et al., 2020)
- Out-of-Distribution Generalization with Maximal Invariant Predictor (IGA, Koyama et al., 2020)
- Gradient Matching for Domain Generalization (Fish, Shi et al., 2021)
- Self-supervised Contrastive Regularization (SelfReg, Kim et al., 2021)
- Smoothed-AND mask (SAND-mask, Shahtalebi et al., 2021)
- Invariant Gradient Variances for Out-of-distribution Generalization (Fishr, Rame et al., 2021)
- Learning Representations that Support Robust Transfer of Predictors (TRM, Xu et al., 2021)
- Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization (IB-ERM, Ahuja et al., 2021)
- Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization (IB-IRM, Ahuja et al., 2021)
- Optimal Representations for Covariate Shift (CAD & CondCAD, Ruan et al., 2022), contributed by @ryoungj
- Quantifying and Improving Transferability in Domain Generalization (Transfer, Zhang et al., 2021), contributed by @Gordon-Guojun-Zhang
- Invariant Causal Mechanisms through Distribution Matching (CausIRL with CORAL or MMD, Chevalley et al., 2022), contributed by @MathieuChevalley

Weight averaging

Consider θ_1 and θ_2 two weights for a given architecture. If the **linearly mode connectivity holds** in the test-loss landscape, then you can average them.

You can't average the weights of non-linear networks

[Frankle2020] Linear mode connectivity and the lottery ticket hypothesis. ICML.

Weight averaging along a training trajectory

Moving average [Izmailov2018]: checkpoints collected along a training trajectory remain linearly connected.

[Izmailov2018] Averaging Weights Leads to Wider Optima and Better Generalization. UAI. [Cha2021] SWAD: Domain Generalization by Seeking Flat Minima. NeurIPS.

Weight averaging from multiple trajectories

Model soups [Wortsman2022]: when fine-tuned from a shared pre-trained model with different hyperparams, weights remain linearly connected.

[Neyshabur2020] What is being transferred in transfer learning? NeurIPS.

[Wortsman2022] Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. ICML. [Rame2022] DiWA: diverse weight averaging for out-of-distribution generalization. NeurIPS.

Weight averaging approximates ensembling. Thus the 3 key criteria to trade-off:

1. Averageability

The weights should remain linearly connected.

2. Individual accuracies

The weights should be individually accurate.

3. Diversity

The weights should be sufficiently diverse to reduce variance.

Era of open-source datasets and weights

huggingface.co/datasets

🗏 cifar10 \odot Preview \circ Updated 14 days ago $\circ \downarrow$ 18.5k $\circ \heartsuit$ 8

🗏 imagenet-1k \odot Preview \circ Updated Nov 3, 2022 \circ \downarrow 9.82k \circ \heartsuit 57

🗏 mnist \odot Preview \circ Updated 14 days ago \circ \downarrow 8k \circ \heartsuit 13

food101 \odot Preview \circ Updated 14 days ago $\circ \downarrow$ 5.75k $\circ \heartsuit$ 6

facebook/winoground \odot Preview \bullet Updated 20 days ago \bullet \downarrow 3.13k \bullet \heartsuit 27

sasha/dog-food \odot Preview \circ Updated Oct 25, 2022 \circ \downarrow 1.48k \circ \heartsuit 1

imagenet_sketch ◎ Preview • Updated 14 days ago • ↓ 921

Bingsu/Cat_and_Dog ◎ Preview • Updated 13 days ago • ↓ 775

frgfm/imagenette \odot Preview \circ Updated Dec 11, 2022 \circ \downarrow 712 \circ \heartsuit 3

alkzar90/CC6204-Hackaton-Cub-Dataset O Preview
 · Updated 27 days ago
 · ↓ 221 · ♡ 1
 ·

alkzar90/rock-glacier-dataset \odot Preview \circ Updated Dec 19, 2022 \circ \downarrow 211 \circ \heartsuit 1

fashion_mnist \odot Preview \circ Updated 14 days ago $\circ \downarrow$ 17.5k $\circ \heartsuit$ 9

beans \odot Preview \circ Updated 14 days ago \circ \downarrow 9.72k \circ \heartsuit 6

🗏 cifar100 \circledast Preview $\,\circ\,$ Updated 14 days ago $\,\circ\,\,\downarrow\,$ 6.91k $\,\circ\,\,\heartsuit\,$ 3

Maysee/tiny-imagenet \odot Preview • Updated Jul 12, 2022 • \downarrow 3.48k • \heartsuit 5

rvl_cdip \odot Preview \circ Updated 14 days ago $\circ \downarrow$ 1.83k $\circ \heartsuit$ 15

cats_vs_dogs \odot Preview \circ Updated 14 days ago $\circ \downarrow 1.1k \circ \heartsuit 5$

🗏 svhn \odot Preview \circ Updated 14 days ago \circ \downarrow 821 \circ \heartsuit 1

competitions/aiornot © Preview
◦ Updated 6 days ago
◦ ↓ 765
◦ ♡ 17

alkzar90/NIH-Chest-X-ray-dataset \odot Preview • Updated Nov 22, 2022 • \downarrow 320 • \heartsuit 8

nelorth/oxford-flowers ◎ Preview • Updated Dec 11, 2022 • ↓ 221

biglam/nls_chapbook_illustrations \odot Preview \circ Updated 25 days ago $\circ \downarrow$ 149 $\circ \heartsuit$ 4

huggingface.co/models/resnet-50

🐏 nateraw/resnet50-oxford-iiit-pet 💀 • Updated Dec 3, 2021 • ↓ 16

ImageIN/resnet-50_finetuned 🖫 • Updated Sep 23, 2022 • ↓ 16

jayanta/microsoft-resnet-50-cartoon-face-recogni… 🖫 • Updated 16 days ago • ↓ 12

morganchen1007/resnet-50-finetuned-resnet50 □ · Updated Aug 24, 2022 · ↓ 11

morganchen1007/resnet-50-finetuned-resnet50_0831

torchxrayvision/resnet50-res512-all 💀 • Updated Jun 21, 2022 • ↓ 9

Celal11/resnet-50-finetuned-FER2013-0.003-CKPlus 🖫 🔹 Updated 9 days ago 🔹 🗸 9

jayanta/resnet-50-FV2-finetuned-memes 🖫 • Updated Oct 21, 2022 • ↓ 8

YKXBCi/resnet-50-ucSat 🔊 • Updated Jul 3, 2022 • ↓ 7

we nateraw/resnet50-beans-dummy-sagemaker □ · Updated Sep 22, 2021 · ↓ 6

Key idea: recycle these weights as initializations for the target task.

Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization

A simple strategy:

- 1. From a shared pre-trained network.
- 2. Recycle multiple fine-tunings on auxiliary tasks.
- 3. From these weights, launch multiple fine-tunings on the target task.
- 4. Average all the fine-tuned weights.

Does Ratatouille meet the 3 key criteria for successful weight averaging ?

1. Averageability

Yes, the weights remain linearly connected when auxiliary tasks are sufficiently similar.

2. Individual accuracies

Yes, when the auxiliary tasks learn rich features, that help for the target task.

[Phang2018] Sentence encoders on stilts: Supplementary training on intermediate labeleddata tasks.

[Choshen2022] Where to start? analyzing the potential value of intermediate models.

Yes !! huge gain in diversity caused by different initialization and remains along fine-tuning on the target task.

New SoTA on DomainBed

- Use the other datasets from DomainBed as the auxiliary datasets.
- No inference overhead.
- No training overhead if auxiliary weights are recycled.

Algo	Strategy	VLCS	PACS	ОН	Terra	DomainNet	Avg
ERM	Standard ft	78.1	85.9	69.4	50.4	44.3	65.6
Soups	WA of networks with same inits	78.4	88.7	72.1	51.4	47.4	67.6
Inter-training	Auxiliary task	77.7	89.0	69.9	46.7	44.5	65.6
Ratatouille	WA of networks with intertrain	78.5	89.5	73.1	51.8	47.5	68.1

Updatable machine learning [Raffel2023]

[Raffel2023] A Call to Build Models Like We Build Open-Source Software. ACM. [Wortsman2022] lo-fi: distributed fine-tuning without communication? JMLR.

Embarrassingly simple parallelization

Compute parallelism [Wortsman2022]!

- Simple engineering.
- Efficiency and training time.
- No waste: leverage all runs.
- Better compute scaling laws ?

	Average updates per second, normalized (\uparrow)						
	fully synchronized (TRANSFORMER-LM)	partially synchronized (DEMIX)	BTM: embarrassingly parallel (branched ELMs)				
125M	1.00	1.01	1.05				
350M	1.00	1.11	1.23				
750M	1.00	1.01	1.27				
1.3B	1.00	0.97	1.33				

Conclusion

- Linear mode connectivity across weights fine-tuned on different tasks
- New ratatouille strategy for out-of-distribution generalization
- Code is available: github.com/facebookresearch/ModelRatatouille \bullet

Thank you for your attention

