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Figl. We propose rewarded soup, an efficient and flexible multi-
policy strategy for reinforcement learning from foundation models.

We first specialize multiple weights {6;};-, independently, one for
each proxy reward in {R;}}-,. Then we interpolate those models

linearly in the weight space Yi*, A; - 6;.
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Fig2. We consider N = 2 weights fine-tuned from LLaMA on 2
divere rewards for summaries: 8; optimized for Ry evaluating
completeness, 6, optimized for R, evaluating faithfulness. Then,

weight interpolation (1 — 1) - 6,

A - 08, between those 2 models

trade-off their abilities.

Rewarded soup leverages weight interpolation for human-aligned Al via RLHF:

1. Move from single-policy towards a multi-policy paradigm to embrace the diversity of human opinions (Figl).

2. Reveals by weight interpolation a Pareto-optimal set of solutions, and thus reduces reward misspecification (Fig2).

3. Benefits from linear mode connectivity between weights RLHF fine-tuned with diverse rewards from a shared pretrained initialization.

4. |s one step towards more efficient building of more transparent and fairer LLMs.

5. Applied to LLMs but also multimodal tasks such as image-to-text captioning, text-to-image diffusion, robot locomotion and more.



