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[Stiennon2020] Learning to summarize from human feedback. NeurIPS.
[Ouyang2022] Training language models to follow instructions with human feedback. NeurIPS.
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Need for a proxy reward in the RL step
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Proxy reward

Problem: the true reward is not available.
Consequence: proxy reward.

Challenge: reward misspecification
(when the training reward is not a good proxy).

2. Supervised
learning: 

instruction fine-
tuning

1. Unsupervised 
pre-training: next 
token prediction

3. Reinforcement 
learning: from 
proxy reward

[Stiennon2020] Learning to summarize from human feedback. NeurIPS.
[Ouyang2022] Training language models to follow instructions with human feedback. NeurIPS.



[Christiano2017] Deep reinforcement learning from human preferences. NeurIPS.
Image from https://huggingface.co/blog/rlhf.

Reward model from human feedback for RLHF

Proxy reward model



Diversity of opinions
Consistency issue: only ≈65% agreement across labellers.

Indeed, human opinions are diverse (and subjective):
• Politics: democrat vs republican? 
• Uncertain situations: economic strategy for climate change?
• Aesthetic: beautiful vs ugly?

More generally, different expectations from machines:
• Safety: helpfulness vs harmlessness? 
• Summarization: complete or factual ?

Diversity of people and applications ⇒	which one should 
we optimize for?

Limitation of single reward



“Human aligned artificial intelligence is a multi-objective problem” [Vamplew2018].

Move from a single-policy towards a multi-policy paradigm to embrace diversity.
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Rewarded soup:

1. From a shared pre-trained foundation model,
2. Fine-tuned to follow instructions,
3. Launch one RL fine-tuning for each reward, each representing an opinion,
4. Interpolate the weights expert on diverse rewards,
5. Reveal the front of solutions (and select one interpolating coefficient).
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Rewarded soups: towards Pareto-optimal alignment
by interpolating weights fine-tuned on diverse rewards



Weight 
interpolation relies 
on linear mode 
connectivity
When fine-tuned from a shared pre-trained model, 
weights remain linearly connected and thus can be 
interpolated despite the non-linearities in the architecture.
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[Wortsman2022] Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. ICML.
[Rame2023] DiWA: diverse weight averaging for out-of-distribution generalization. NeurIPS.
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Summarization with diverse reward models
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Pareto-optimal alignment across rewards

Rewarded soups

Interpolate the weights a posteriori:

'
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Multi-objective: MORL

Interpolate the rewards a priori:

'
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Issue: cost, as preference variations 
result in different solutions, requiring a 

high level of granularity.
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In the paper, we theoretically prove the 
(approximated) Pareto-optimality of 

rewarded soups for quadratic rewards.



We apply rewarded soup in multiple standard 
learning tasks:

1. Text

• Summarization (news, reddit).
• Movie review generation.

• Q&As of technical questions.
• Conversational assistant.

2. Multimodal:
text and image

• Image captioning.
• Image generation with diffusion.

• Visual grounding.
• Visual question answering.

3. Continuous 
control

• Locomotion.



Benefits from rewarded soups

1. Efficiency
• 1 single fine-tuning

per reward.
• Parralelization.

• No inference overhead.

2. Transparence

• Support decision-making.
• Facilitate regulation by an (external) 

non-technical committee.
3. Updatable
• Easily update the 𝜆.

• Easily add new reward.
• Iterative development process.

4. Fairness

• Value pluralism.
• Under-represented groups.
• Less ideological hegemony.
• Federated learning setups?.



Conclusion

• Human-aligned AI as a multi-objective problem.
• Weight interpolation as a practical pareto-optimal solution.
• Code: https://github.com/alexrame/rewardedsoups


