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“
Explore the findings from the 
generalization literature (& my PhD) 
to the design of reward models for 
efficient, reliable, and robust 
RL alignment.



Use RL to maximize reward 
by updating weights.

Generate output by feeding 
an unlabeled input data point

Assign a reward to the 
model’s output.

RL fine-tuning

SFT 

Sample from policy

RL alignment of LLMs: reinforcement learning 

Which reward 
function ???

RL fine-tune stepCompute reward

PT 

Supervised 
fine-tuning

Aligned LLM 



Use RL to maximize reward 
by updating weights.

RL fine-tune step
Generate output by feeding 
an unlabeled input data point

Compute reward
Assign a reward to the 

model’s output.

RL fine-tuning

SFT 

Sample from policy
Aligned LLM 

RM 
fine-tuning

RL alignment of LLMs: reinforcement learning from pairwise feedback

Human or AI pairwise feedback.

Collect preference dataset

Reward model 

Reward function

The reward model should 
efficiently, reliably and 
robustly score generations.
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RL vs. SFT: 98.5 % win rate*.

WARM RL vs. SFT: 99.8 % win rate*.

WARM RL vs. RL: 79.4% win rate*.

WARM policies are favored 
in pairwise comparisons

*computed with a ULM 340B prompted as a 
preference labeler.
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Reward overoptimization is a key challenge in alignment

The policy exploits reward misspecification 
to achieve high proxy rewards without 
improving gold human preferences.

● Key in Bard and Gemini efforts.
● Across all model scales.
● For every flavor of RL algorithms.

From “Reward model ensembles help mitigate overoptimization” by Coste et al.
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Consequences of reward overoptimization

Complex checkpoint selection

Goodhart's law: “When a measure 
becomes a target, it ceases to be a good 
measure”.

Bad performances

Incoherent linguistic outputs. Low diversity 
in predictions. Adversarial generations. Bad 
generalization to new prompts.

Bias and safety risks

Misalignment, thus unsafe AI, worsening 
social issues and misuses. Uncontrolled 
deployment in real-world applications.
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Offline preference dataset

The preference dataset is generated with a 
policy different from the one of interest.

Model drift

The policy changes during training, 
accentuating the distribution shifts.

Issue 1: distribution shifts in reward modeling
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Issue 2: noisy and unreliable preference datasets

Heterogeneity of opinions

Humans have different opinions on some 
subject (aesthetics, politics, etc), and multi 
objectives (harmlessness to engagement).

Complexity of the tasks

Especially when the AIs are more capable 
than the human labelers. Scalable 
oversight challenge.

Labeler inconsistency

Errors caused by fatigue, imperfect 
(financial) incentives for non-rational 
human labelers. Or bad prompting for AIs.

Overall, 65% inter-agreement across labelers.
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The standard strategies against reward overoptimization are:

3. Prediction ensembling of RMs

The predicted rewards from multiple RMs are 
averaged, and then used in the RL.

Inefficient. Do not tackle corruption.

1. Strongly KL-regularized RL

Explicitly force RL-policies to remain closer to 
their SFT initialization (small KL).

Risk of underfitting.

Such strategies only mitigate the issue to some extent.

2. Continual learning of the RM

The RM is continually updated with new active 
data, collected on-policy.

Not practical and expensive.
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“
Our strategy: efficient ensembling 
of 𝑀 reward models.

More efficient: zero overhead.
More reliable; less hacking.
More robust; less inconsistent.
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Use RL to maximize reward 
by updating weights.

RL fine-tune step
Generate output by feeding 
an unlabeled input data point

Compute reward
Assign a reward to the 

model’s output.

SFT 

Sample from policy

Multiple RM 
fine-tunings with 

different 
hyperparams

Human or AI pairwise feedback.

Collect preference dataset

WARM: Weight
Averaged Reward Model

Reward function

Weight averaging

WARM procedure RL fine-tuning

Aligned LLM 
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Weight interpolation relies on linear mode connectivity

When fine-tuned from a shared pre-trained initialization, weights remain linearly connected and thus 
can be interpolated despite the non-linearities in the architecture.

● “What is being transferred in transfer learning?” by Neyshabur et al., NeurIPS 2020.
● “Model soups: averaging weights improves accuracy without increasing inference time” by Wortsman et al., ICML 2022.
● “Diverse weight averaging for out-of-distribution generalization” by Ramé et al., NeurIPS 2022.
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Sources of diversity

Different hyperparameters

● Learning rates.
● Dropout proba.

Different data orders

Stochasticity in the the batch ordering.

Different SFT initializations? Baklava 

Different initializations collected along a single SFT.

Diversity limitations:

● Same architecture and pre-training of the featurizer.
● Linear probing of the classifier.
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As a first order analysis,
weight averaging (WA) approximates prediction ensembling (ENS)

WA performs similarly to the more costly ENS.



As a second order analysis,
WA generalizes while ENS memorizes.

The further away from the train distribution,
the better the WA vs. ENS.



“Theoretical insights:

WA removes run-specific features entailing memorization,

and favors run-invariant features entailing generalization,

which facilitates smoothness and learnability of the reward.

(see paper go/warm-tex for more details)

http://go/warm-tex


What WARM brings is:

Reliability under 
distribution shifts 

Variance reduction by 
combining 𝑀 RMs.

Efficiency 

WA deletes the inference 
overhead, making 𝑀 large 
possible.

Lead to appropriate 
policies by limiting 
reward hacking.

Better success 
detectors at zero 
inference cost.

Robustness to labeling 
inconsistencies

Resilience to noise/corruption 
in preference labels.

Provide robust trainable 
signals for the policy 
during RL.



Experimental setup

Task: TLDR summarization.
Preference: from a ULM-340B, following the “RL from AI Feedback” paper.
Summaries in train: generated by GPT-3 variants by OpenAI.
Summaries to evaluate (Agent LLM): ULM-8B
Trained reward model: ULM-1B

To simulate pairwise human preferences, we prompt a ULM-340B as a preference labeler.



Increasing 𝑀 (the number of weights in 
the average) delays the collapse of the 
control reward at the end of the training.

WARM reduces reward 
overoptimization and       
facilitates checkpoints selection.

Reward overoptimization



Increasing 𝑀 (the number of weights in 
the average) pushes the front of solutions 
to the top left.

WARM improves the 
Pareto-optimal front of policies.

Pareto optimality
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Impact of WARM for different 
regularization strengths

The 𝛼 hyperparameter controls the KL regularization.

The policies trained with WARM lead 
to a better Pareto-front of solutions 
when considering a wide range of 
values for 𝛼.
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Pairwise comparisons

All policies are compared against a reference trained with 
WARM 𝑀＝6 for 3500 training steps (which is the best 
number of steps according to the control reward).

The policies trained with WARM are 
favored* in pairwise comparisons.

*computed with a ULM 340B prompted as a 
preference labeler.
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Simple and efficient success detectors: better 
accuracies at no inference cost.

Reliable reward: prevents reward hacking 
caused by distribution shifts.

Provide robust & learnable signals: reduces 
memorization in the noisy preference datasets.

Key takeaways
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Weight averaging everywhere
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Thank you!
Alexandre Ramé
Student researcher

Supervised by Johan Ferret and Nino Vieillard, 
and helped by the RL5X team.
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First learn the linear classifier before end-to-end fine-tuning

WA consistently matches or beats ensembling, 
except when no linear probing.

Following “Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution” by Kumar et al., ICLR 2022.


